Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinoic acid signaling acts as a rheostat to balance Treg function

Abstract

Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    CAS  PubMed  Google Scholar 

  2. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    Article  CAS  PubMed  Google Scholar 

  3. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.

    Article  CAS  PubMed  Google Scholar 

  4. Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol. 2019;10:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44.

    Article  CAS  PubMed  Google Scholar 

  6. Brunstein CG, Miller JS, Cao Q, McKenna DH, Hippen KL, Curtsinger J, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117:1061–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol. 2009;10:1000–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, Anthony B, Rosenthal W, Luche H, et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity. 2013;39:949–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20:62–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zeng R, Bscheider M, Lahl K, Lee M, Butcher EC. Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunol. 2016;9:183–93.

    Article  CAS  PubMed  Google Scholar 

  11. Guo Y, Brown C, Ortiz C, Noelle RJ. Leukocyte homing, fate, and function are controlled by retinoic acid. Physiol Rev. 2015;95:125–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Brown CC, Esterhazy D, Sarde A, London M, Pullabhatla V, Osma-Garcia I, et al. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program. Immunity. 2015;42:499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou X, Kong N, Wang J, Fan H, Zou H, Horwitz D, et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol. 2010;185:2675–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q, et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA. 2014;111:E3432–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Povoleri GAM, Nova-Lamperti E, Scotta C, Fanelli G, Chen YC, Becker PD, et al. Human retinoic acid-regulated CD161(+) regulatory T cells support wound repair in intestinal mucosa. Nat Immunol. 2018;19:1403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duurland CL, Brown CC, O’Shaughnessy RF, Wedderburn LR. CD161(+) Tconv and CD161(+) Treg share a transcriptional and functional phenotype despite limited overlap in TCRbeta repertoire. Front Immunol. 2017;8:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature. 2011;471:220–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aoyama K, Saha A, Tolar J, Riddle MJ, Veenstra RG, Taylor PA, et al. Inhibiting retinoic acid signaling ameliorates graft-versus-host disease by modifying T-cell differentiation and intestinal migration. Blood. 2013;122:2125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA, et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol. 2012;13:587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang C, Kang SG, HogenEsch H, Love PE, Kim CH. Retinoic acid determines the precise tissue tropism of inflammatory Th17 cells in the intestine. J Immunol. 2010;184:5519–26.

    Article  CAS  PubMed  Google Scholar 

  21. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol. 2008;181:2277–84.

    Article  CAS  PubMed  Google Scholar 

  23. Holder BS, Grant CR, Liberal R, Ma Y, Heneghan MA, Mieli-Vergani G, et al. Retinoic acid stabilizes antigen-specific regulatory T-cell function in autoimmune hepatitis type 2. J Autoimmun. 2014;53:26–32.

    Article  CAS  PubMed  Google Scholar 

  24. Pino-Lagos K, Guo Y, Brown C, Alexander MP, Elgueta R, Bennett KA, et al. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity. J Exp Med. 2011;208:1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thangavelu G, Lee YC, Loschi M, Schaechter KM, Feser CJ, Koehn BH, et al. Dendritic cell expression of retinal aldehyde dehydrogenase-2 controls graft-versus-host disease lethality. J Immunol. 2019;202:2795–805.

    Article  CAS  PubMed  Google Scholar 

  26. Fan MY, Low JS, Tanimine N, Finn KK, Priyadharshini B, Germana SK, et al. Differential roles of IL-2 signaling in developing versus mature tregs. Cell Rep. 2018;25:1204–13. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017;377:2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng G, Yu A, Malek TR. T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev. 2011;241:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. 2016;17:1322–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scholz J, Kuhrau J, Heinrich F, Heinz GA, Hutloff A, Worm M, et al. Vitamin A controls the allergic response through T follicular helper cell as well as plasmablast differentiation. Allergy. 2021;76:1109–22.

    Article  CAS  PubMed  Google Scholar 

  32. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16:311–23.

    Article  CAS  PubMed  Google Scholar 

  33. Lehmann J, Huehn J, de la Rosa M, Maszyna F, Kretschmer U, Krenn V, et al. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci USA. 2002;99:13031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med. 2004;199:303–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun IH, Oh MH, Zhao L, Patel CH, Arwood ML, Xu W, et al. mTOR complex 1 signaling regulates the generation and function of central and effector Foxp3(+) regulatory T cells. J Immunol. 2018;201:481–92.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature. 2013;499:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chapman NM, Chi H. mTOR links environmental signals to T cell fate decisions. Front Immunol. 2014;5:686.

    PubMed  Google Scholar 

  38. Shi H, Chapman NM, Wen J, Guy C, Long L, Dhungana Y, et al. Amino acids license kinase mTORC1 activity and treg cell function via small G proteins Rag and Rheb. Immunity. 2019;51:1012–27. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hippen KL, Aguilar EG, Rhee SY, Bolivar-Wagers S, Blazar BR. Distinct regulatory and effector T cell metabolic demands during graft-versus-host disease. Trends Immunol. 2020;41:77–91.

    Article  CAS  PubMed  Google Scholar 

  40. Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39:171–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu C, Chapman NM, Karmaus PW, Zeng H, Chi H. mTOR and metabolic regulation of conventional and regulatory T cells. J Leukoc Biol. 2015;97:837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saravia J, Zeng H, Dhungana Y, Bastardo Blanco D, Nguyen TM, Chapman NM, et al. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci Adv. 2020;6:eaaw6443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Quemeneur L, Gerland LM, Flacher M, Ffrench M, Revillard JP, Genestier L. Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J Immunol. 2003;170:4986–95.

    Article  CAS  PubMed  Google Scholar 

  44. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development. 2010;137:283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen Y, Ma L, Hogarth C, Wei G, Griswold MD, Tong MH. Retinoid signaling controls spermatogonial differentiation by regulating expression of replication-dependent core histone genes. Development. 2016;143:1502–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21:527–38.

    Article  CAS  PubMed  Google Scholar 

  47. Owen DL, Mahmud SA, Sjaastad LE, Williams JB, Spanier JA, Simeonov DR, et al. Thymic regulatory T cells arise via two distinct developmental programs. Nat Immunol. 2019;20:195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med. 2008;205:1983–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pierson W, Cauwe B, Policheni A, Schlenner SM, Franckaert D, Berges J, et al. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3(+) regulatory T cells. Nat Immunol. 2013;14:959–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity. 2015;42:227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19:665–73.

  52. Dominguez-Villar M, Baecher-Allan CM, Hafler DA. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med. 2011;17:673–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yue X, Lio CJ, Samaniego-Castruita D, Li X, Rao A. Loss of TET2 and TET3 in regulatory T cells unleashes effector function. Nat Commun. 2019;10:2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–6.

    Article  CAS  PubMed  Google Scholar 

  55. Laurence A, Amarnath S, Mariotti J, Kim YC, Foley J, Eckhaus M, et al. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity. 2012;37:209–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hsieh WC, Hsu TS, Chang YJ, Lai MZ. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463:808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184:3433–41.

    Article  CAS  PubMed  Google Scholar 

  60. Singh AK, Eken A, Hagin D, Komal K, Bhise G, Shaji A, et al. DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling. JCI Insight. 2017;2:e94275.

  61. Janssen E, Kumari S, Tohme M, Ullas S, Barrera V, Tas JM, et al. DOCK8 enforces immunological tolerance by promoting IL-2 signaling and immune synapse formation in Tregs. JCI Insight. 2017;2:e94298.

  62. Kim HJ, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME, et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. 2015;350:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, et al. Interferon-gamma drives treg fragility to promote anti-tumor Immunity. Cell. 2017;169:1130–41. e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park Y, Jin HS, Lopez J, Elly C, Kim G, Murai M, et al. TSC1 regulates the balance between effector and regulatory T cells. J Clin Invest. 2013;123:5165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng H, Chi H. mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr Opin Immunol. 2017;46:103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu X, Teng XL, Wang F, Zheng Y, Qu G, Zhou Y, et al. Metabolic control of regulatory T cell stability and function by TRAF3IP3 at the lysosome. J Exp Med. 2018;215:2463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009;206:421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang R, Huynh A, Whitcher G, Chang J, Maltzman JS, Turka LA. An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest. 2013;123:580–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hasan SN, Sharma A, Ghosh S, Hong SW, Roy-Chowdhuri S, Im SH, et al. Bcl11b prevents catastrophic autoimmunity by controlling multiple aspects of a regulatory T cell gene expression program. Sci Adv. 2019;5:eaaw0706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Brent Koehn and Nicole Chapman for critical reading of the manuscript, Jamie Panthera for excellent animal husbandry, and Ron Mc Elmurry, Christopher Less, Juan E. Abrahante Lloréns, and the UMN genomics center for technical assistance. This work was supported by grants from the National Institutes of Health, National Institute of Allergy and Infectious Diseases P01 AI056299, R37 AI034495 (BRB), and R01 AI091627 (IM) and the National Heart, Lung, and Blood Institute R01 HL56067 (BRB). This work was supported in part using the resources of the Center for Innovative Technology at Vanderbilt University. GT was supported by a Canadian Institutes of Health Research (CIHR) fellowship. Figures were created with Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

GT designed and performed research, provided, and analyzed the data, and wrote the paper. GA, SBW, SJ, MCZ, ML, EA, CCB, YL, CMH, CJF performed and helped in the experiments, analyzed the data, and edited the manuscript.  SNF peformed RNA seq and integrated ChIP-Seq/RNA-Seq data analysis. APM performed histopathological analysis. KLH, KPM, WJM, IM, GRH, DHM, RZ, LSK, JCR, HS, RJN provided advice and edited the paper. BB supervised research and edited the paper. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Govindarajan Thangavelu.

Ethics declarations

Competing interests

BB receives remuneration as an advisor to Kamon Pharmaceuticals, Five Prime Therapeutics, Regeneron Pharmaceuticals, Magenta Therapeutics, and BlueRock Therapeuetics; research support from Fate Therapeutics, RXi Pharmaceuticals, Alpine Immune Sciences, Abbvie, the Leukemia and Lymphoma Society, the Children’s Cancer Research Fund, and the KidsFirst Fund and is a cofounder of Tmunity. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangavelu, G., Andrejeva, G., Bolivar-Wagers, S. et al. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol 19, 820–833 (2022). https://doi.org/10.1038/s41423-022-00869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00869-y

Keywords

This article is cited by

Search

Quick links