Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention

Abstract

Regulatory T cells (Treg cells) are crucial for maintaining immune tolerance. Compromising the regulatory function of Treg cells can lead to autoimmune liver disease. However, how Treg cell function is regulated has not been fully clarified. Here, we report that mice with AMP-activated protein kinase alpha 1 (AMPKα1) globally knocked out spontaneously develop immune-mediated liver injury, with massive lymphocyte infiltration in the liver, elevated serum alanine aminotransferase levels, and greater production of autoantibodies. Both transplantation of wild-type bone marrow and adoptive transfer of wild-type Treg cells can prevent liver injury in AMPKα1-KO mice. In addition, Treg cell-specific AMPKα1-KO mice display histological features similar to those associated with autoimmune liver disease, greater production of autoantibodies, and hyperactivation of CD4+ T cells. AMPKα1 deficiency significantly impairs Treg cell suppressive function but does not affect Treg cell differentiation or proliferation. Furthermore, AMPK is activated upon T cell receptor (TCR) stimulation, which triggers Foxp3 phosphorylation, suppressing Foxp3 ubiquitination and proteasomal degradation. Importantly, the frequency of Treg cells and the phosphorylation levels of AMPK at T172 in circulating blood are significantly lower in patients with autoimmune liver diseases. Conclusion: Our data suggest that AMPK maintains the immunosuppressive function of Treg cells and confers protection against autoimmune liver disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krawitt EL. Autoimmune hepatitis. N Engl J Med. 2006;354:54–66.

    Article  CAS  PubMed  Google Scholar 

  2. Trivedi PJ, Adams DH. Mucosal immunity in liver autoimmunity: a comprehensive review. J Autoimmun. 2013;46:97–111.

    Article  CAS  PubMed  Google Scholar 

  3. Liberal R, Grant CR, Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells: mechanisms of suppression and impairment in autoimmune liver disease. IUBMB Life. 2015;67:88–97.

    Article  CAS  PubMed  Google Scholar 

  4. Lapierre P, Lamarre A. Regulatory T cells in autoimmune and viral chronic hepatitis. J Immunol Res. 2015;2015:479703.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10:490–500.

    Article  CAS  PubMed  Google Scholar 

  6. Liberal R, Grant CR, Yuksel M, Graham J, Kalbasi A, Ma Y, Heneghan MA, et al. Regulatory T-cell conditioning endows activated effector T cells with suppressor function in autoimmune hepatitis/autoimmune sclerosing cholangitis. Hepatology. 2017;66:1570–84.

    Article  CAS  PubMed  Google Scholar 

  7. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D. Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol. 2004;41:31–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ, et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology. 2010;52:999–1007.

    Article  CAS  PubMed  Google Scholar 

  9. Longhi MS, Mitry RR, Samyn M, Scalori A, Hussain MJ, Quaglia A, Mieli-Vergani G, et al. Vigorous activation of monocytes in juvenile autoimmune liver disease escapes the control of regulatory T-cells. Hepatology. 2009;50:130–42.

    Article  CAS  PubMed  Google Scholar 

  10. Grant CR, Liberal R, Holder BS, Cardone J, Ma Y, Robson SC, Mieli-Vergani G, et al. Dysfunctional CD39(POS) regulatory T cells and aberrant control of T-helper type 17 cells in autoimmune hepatitis. Hepatology. 2014;59:1007–15.

    Article  CAS  PubMed  Google Scholar 

  11. Lapierre P, Beland K, Yang R, Alvarez F. Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology. 2013;57:217–27.

    Article  CAS  PubMed  Google Scholar 

  12. Hardie DG. Adenosine monophosphate-activated protein kinase: a central regulator of metabolism with roles in diabetes, cancer, and viral infection. Cold Spring Harb Symp Quant Biol. 2011;76:155–64.

    Article  CAS  PubMed  Google Scholar 

  13. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774–85.

    Article  CAS  PubMed  Google Scholar 

  14. Ma EH, Poffenberger MC, Wong AH, Jones RG. The role of AMPK in T cell metabolism and function. Curr Opin Immunol. 2017;46:45–52.

    Article  CAS  PubMed  Google Scholar 

  15. MacIver NJ, Blagih J, Saucillo DC, Tonelli L, Griss T, Rathmell JC, Jones RG. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J Immunol. 2011;187:4187–98.

    Article  CAS  PubMed  Google Scholar 

  16. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurchenko E, Raissi TC, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity. 2015;42:41–54.

    Article  CAS  PubMed  Google Scholar 

  17. Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, Macintyre AN, et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 2016;23:649–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–303.

    Article  CAS  PubMed  Google Scholar 

  19. Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, Li B, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol. 2016;292:58–67.

    Article  CAS  PubMed  Google Scholar 

  20. Lee SY, Moon SJ, Kim EK, Seo HB, Yang EJ, Son HJ, Kim JK, et al. Metformin suppresses systemic autoimmunity in roquinsan/san mice through inhibiting B cell differentiation into plasma cells via regulation of AMPK/mTOR/STAT3. J Immunol. 2017;198:2661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev. 2011;241:260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013;39:272–85.

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin S, Gao Z, et al. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem. 2014;289:26872–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, Meerding J, et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 2013;39:259–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li B, Samanta A, Song X, Iacono KT, Bembas K, Tao R, Basu S, et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA. 2007;104:4571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O, Brenkman AB, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010;115:965–74.

    Article  PubMed  Google Scholar 

  27. Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC, Kapoor V, et al. Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat Med. 2013;19:1173–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med. 2013;19:322–8.

    Article  CAS  PubMed  Google Scholar 

  29. Morawski PA, Mehra P, Chen C, Bhatti T, Wells AD. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem. 2013;288:24494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deng G, Nagai Y, Xiao Y, Li Z, Dai S, Ohtani T, Banham A, et al. Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J Biol Chem. 2015;290:20211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuiper EM, Hansen BE, de Vries RA, den Ouden-Muller JW, van Ditzhuijsen TJ, Haagsma EB, Houben MH, et al. Improved prognosis of patients with primary biliary cirrhosis that have a biochemical response to ursodeoxycholic acid. Gastroenterology. 2009;136:1281–7.

    Article  CAS  PubMed  Google Scholar 

  32. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest. 2003;111:91–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, et al. Knockout of the alpha2 but not alpha1 5’-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem. 2004;279:1070–9.

    Article  CAS  PubMed  Google Scholar 

  34. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004;101:3329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bochtler P, Riedl P, Gomez I, Schirmbeck R, Reimann J. Local accumulation and activation of regulatory Foxp3+ CD4 T(R) cells accompanies the appearance of activated CD8 T cells in the liver. Hepatology. 2008;48:1954–63.

    Article  CAS  PubMed  Google Scholar 

  36. Kido M, Watanabe N, Okazaki T, Akamatsu T, Tanaka J, Saga K, Nishio A, et al. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology. 2008;135:1333–43.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao L, Tang Y, You Z, Wang Q, Liang S, Han X, Qiu D, et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLoS ONE. 2011;6:e18909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu H, Huang J, Liu Y, Ai G, Yan W, Wang X, Ning Q. IL-17 contributes to autoimmune hepatitis. J Huazhong Univ Sci Technol Med Sci. 2010;30:443–6.

    Article  CAS  Google Scholar 

  39. Diestelhorst J, Junge N, Schlue J, Falk CS, Manns MP, Baumann U, Jaeckel E, et al. Pediatric autoimmune hepatitis shows a disproportionate decline of regulatory T cells in the liver and of IL-2 in the blood of patients undergoing therapy. PLoS ONE. 2017;12:e0181107.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32:S7–12.

    Article  CAS  Google Scholar 

  41. Hardie DG, Carling D. The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur J Biochem. 1997;246:259–73.

    Article  CAS  PubMed  Google Scholar 

  42. Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27:173–8.

    Article  CAS  PubMed  Google Scholar 

  43. Nath N, Khan M, Rattan R, Mangalam A, Makkar RS, de Meester C, Bertrand L, et al. Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity. Biochem Biophys Res Commun. 2009;386:16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol. 2009;182:8005–14.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Zhou L, Li Y, Guo L, Zhou Z, Xie H, Hou Y, et al. The effects of berberine on concanavalin A-induced autoimmune hepatitis (AIH) in mice and the adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) pathway. Med Sci Monit. 2017;23:6150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arvey A, van der Veeken J, Samstein RM, Feng Y, Stamatoyannopoulos JA, Rudensky AY. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat Immunol. 2014;15:580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Loosdregt J, Coffer PJ. Post-translational modification networks regulating FOXP3 function. Trends Immunol. 2014;35:368–78.

    Article  PubMed  Google Scholar 

  48. Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB, Wang X, et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity. 2017;46:488–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported in part by the following grants: NHLBI (HL079584, HL080499, HL089920, HL110488, HL128014, and HL132500), NCI (CA213022), NIA (AG047776), NSFC (31870897), and NSFC (81900387). Dr. M.H. Zou is an eminent scholar of the Georgia Research Alliance.

Author information

Authors and Affiliations

Authors

Contributions

M.-H.Z. conceived the project, H.Z., Z.L., J.A., M.Z., Y.Q. designed the experiments, carried out experiments and analyzed data, Z.L. and H.Z. wrote the manuscript.

Corresponding author

Correspondence to Zhaoyu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Liu, Z., An, J. et al. Activation of AMPKα1 is essential for regulatory T cell function and autoimmune liver disease prevention. Cell Mol Immunol 18, 2609–2617 (2021). https://doi.org/10.1038/s41423-021-00790-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00790-w

Keywords

This article is cited by

Search

Quick links