Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis

Abstract

The liver is an immunologically tolerant organ and a common metastatic site of multiple cancer types. Although a role for cancer cell invasion programs has been well characterized, whether and how liver-intrinsic factors drive metastatic spread is incompletely understood. Here, we show that aberrantly activated hepatocyte-intrinsic cell cycle-related kinase (CCRK) signaling in chronic liver diseases is critical for cancer metastasis by reprogramming an immunosuppressive microenvironment. Using an inducible liver-specific transgenic model, we found that CCRK overexpression dramatically increased both B16F10 melanoma and MC38 colorectal cancer (CRC) metastasis to the liver, which was highly infiltrated by polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and lacking natural killer T (NKT) cells. Depletion of PMN-MDSCs in CCRK transgenic mice restored NKT cell levels and their interferon gamma production and reduced liver metastasis to 2.7% and 0.7% (metastatic tumor weights) in the melanoma and CRC models, respectively. Mechanistically, CCRK activated nuclear factor-kappa B (NF-κB) signaling to increase the PMN-MDSC-trafficking chemokine C-X-C motif ligand 1 (CXCL1), which was positively correlated with liver-infiltrating PMN-MDSC levels in CCRK transgenic mice. Accordingly, CRC liver metastasis patients exhibited hyperactivation of hepatic CCRK/NF-κB/CXCL1 signaling, which was associated with accumulation of PMN-MDSCs and paucity of NKT cells compared to healthy liver transplantation donors. In summary, this study demonstrates that immunosuppressive reprogramming by hepatic CCRK signaling undermines antimetastatic immunosurveillance. Our findings offer new mechanistic insights and therapeutic targets for liver metastasis intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3: Depletion of PMN-MDSCs restores hepatic NKT cells and abrogates liver metastasis in CCRK-TG mice.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

    Article  CAS  Google Scholar 

  2. Disibio, G. & French, S. W. Metastatic patterns of cancers: results from a large autopsy study. Arch. Pathol. Lab. Med. 132, 931–939 (2008).

    Article  Google Scholar 

  3. Riihimaki, M., Hemminki, A., Sundquist, J. & Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep. 6, 29765 (2016).

    Article  Google Scholar 

  4. Tas, F. Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J. Oncol. 2012, 647684 (2012).

    Article  Google Scholar 

  5. Brodt, P. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin. Cancer Res. 22, 5971–5982 (2016).

    Article  CAS  Google Scholar 

  6. Eggert, T. & Greten, T. F. Tumor regulation of the tissue environment in the liver. Pharmacol. Ther. 173, 47–57 (2017).

    Article  CAS  Google Scholar 

  7. Robinson, M. W., Harmon, C. & O'Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell Mol. Immunol. 13, 267–276 (2016).

    Article  CAS  Google Scholar 

  8. Williamson, T., Sultanpuram, N. & Sendi, H. The role of liver microenvironment in hepatic metastasis. Clin. Transl. Med. 8, 21 (2019).

    Article  Google Scholar 

  9. Kondo, T. et al. The impact of hepatic fibrosis on the incidence of liver metastasis from colorectal cancer. Br. J. Cancer 115, 34–39 (2016).

    Article  CAS  Google Scholar 

  10. Wu, W. et al. Fatty liver is a risk factor for liver metastasis in Chinese patients with non-small cell lung cancer. PeerJ 7, e6612 (2019).

    Article  Google Scholar 

  11. Lee, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567, 249–252 (2019).

    Article  CAS  Google Scholar 

  12. Condamine, T., Ramachandran, I., Youn, J. I. & Gabrilovich, D. I. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu. Rev. Med. 66, 97–110 (2015).

    Article  CAS  Google Scholar 

  13. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19, 108–119 (2018).

    Article  CAS  Google Scholar 

  14. Zhou, J. et al. Hepatoma-intrinsic CCRK inhibition diminishes myeloid-derived suppressor cell immunosuppression and enhances immune-checkpoint blockade efficacy. Gut 67, 931–944 (2018).

    Article  CAS  Google Scholar 

  15. Sun, H. et al. An inflammatory-CCRK circuitry drives mTORC1-dependent metabolic and immunosuppressive reprogramming in obesity-associated hepatocellular carcinoma. Nat. Commun. 9, 5214 (2018).

    Article  CAS  Google Scholar 

  16. Liu, M. et al. Targeting monocyte-intrinsic enhancer reprogramming improves immunotherapy efficacy in hepatocellular carcinoma. Gut 69, 365–379 (2020).

    Article  CAS  Google Scholar 

  17. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  18. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    Article  CAS  Google Scholar 

  19. Feng, H. et al. Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives beta-catenin/T cell factor-dependent hepatocarcinogenesis. J. Clin. Investig. 121, 3159–3175 (2011).

    Article  CAS  Google Scholar 

  20. Yu, Z. et al. Cell cycle-related kinase mediates viral-host signalling to promote hepatitis B virus-associated hepatocarcinogenesis. Gut 63, 1793–1804 (2014).

    Article  CAS  Google Scholar 

  21. Feng, H. et al. A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients. J. Hepatol. 62, 1100–1111 (2015).

    Article  CAS  Google Scholar 

  22. Mok, M. T. et al. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol. Ther. 186, 138–151 (2018).

    Article  CAS  Google Scholar 

  23. Lupu, F. I., Burnett, J. B. & Eggenschwiler, J. T. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev. Biol. 434, 24–35 (2018).

    Article  CAS  Google Scholar 

  24. Mumert, M. et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res. 72, 4944–4953 (2012).

    Article  CAS  Google Scholar 

  25. Zhu, J. et al. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 8, 1404 (2017).

    Article  Google Scholar 

  26. Ma, C. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, https://doi.org/10.1126/science.aan5931 (2018).

  27. Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).

    Article  CAS  Google Scholar 

  28. Lu, Z. et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature, https://doi.org/10.1038/s41586-020-2054-x (2020).

  29. Burke, S. J. et al. NF-kappaB and STAT1 control CXCL1 and CXCL2 gene transcription. Am. J. Physiol. Endocrinol. Metab. 306, E131–E149 (2014).

    Article  CAS  Google Scholar 

  30. Bergenfelz, C., Roxa, A., Mehmeti, M., Leandersson, K. & Larsson, A. M. Clinical relevance of systemic monocytic-MDSCs in patients with metastatic breast cancer. Cancer Immunol. Immunother. 69, 435–448 (2020).

    Article  CAS  Google Scholar 

  31. Weide, B. et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin. Cancer Res. 20, 1601–1609 (2014).

    Article  CAS  Google Scholar 

  32. Lee, J. W. & Beatty, G. L. Inflammatory networks cultivate cancer cell metastasis to the liver. Cell Cycle 19, 642–651 (2020).

    Article  CAS  Google Scholar 

  33. Heymann, F. & Tacke, F. Immunology in the liver-from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 13, 88–110 (2016).

    Article  CAS  Google Scholar 

  34. Motohashi, S. et al. A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J. Immunol. 182, 2492–2501 (2009).

    Article  CAS  Google Scholar 

  35. Fujii, S. et al. NKT cells as an ideal anti-tumor immunotherapeutic. Front. Immunol. 4, 409 (2013).

    Article  Google Scholar 

  36. Li, Z., Wu, Y., Wang, C. & Zhang, M. Mouse CD8(+)NKT-like cells exert dual cytotoxicity against mouse tumor cells and myeloid-derived suppressor cells. Cancer Immunol. Immunother. 68, 1303–1315 (2019).

    Article  CAS  Google Scholar 

  37. De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Investig. 118, 4036–4048 (2008).

    Article  Google Scholar 

  38. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  Google Scholar 

  39. Marshall, E. A. et al. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol. Cancer 15, 67 (2016).

    Article  Google Scholar 

  40. Zhang, H. et al. Critical role of myeloid-derived suppressor cells in tumor-induced liver immune suppression through inhibition of NKT cell function. Front. Immunol. 8, 129 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Milette, S., Sicklick, J. K., Lowy, A. M. & Brodt, P. Molecular pathways: targeting the microenvironment of liver metastases. Clin. Cancer Res. 23, 6390–6399 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Andrew M.L. Chan for his kind gift of the B16F10 melanoma cell line. This project is supported by the University Grants Committee through the Collaborative Research Fund (C4045-18W), Theme-based Research Scheme (T11-706/18-N), General Research Fund (14108219, 14105419), the Li Ka Shing Foundation and the Terry Fox Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: X.Z., J.Z., and A.S.L.C.; acquisition of data: X.Z., Z.X., H.S., W.Y., M.T.S.M., J.W., J.L., M.L., W.T., Y.F., H.K.S.W., S.W.T., and K.L.C.; analysis and interpretation of the data: X.Z., J.Z., and A.S.L.C.; acquisition of patient specimens: H.S., P.C.Y., J.W., P.B.S.L., A.W.H.C., K.F.T., and Q.X.; drafting of the manuscript: X.Z., J.Z., and A.S.L.C.; critical revision of the manuscript: J.Z., K.L.C., A.W.H.C., K.F.T., S.L.C., J.X., X.C., J.Y., S.P., J.J.Y.S., M.K., and A.S.L.C.; obtained funding: J.Z., J.J.Y.S., M.K., and A.S.L.C.; and study supervision: J.Z. and A.S.L.C.

Corresponding authors

Correspondence to Jingying Zhou or Alfred Sze-Lok Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhou, J., Xiong, Z. et al. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol 18, 1005–1015 (2021). https://doi.org/10.1038/s41423-020-00534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-00534-2

Keywords

This article is cited by

Search

Quick links