Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-α

Abstract

Acute kidney injury (AKI) is a common clinical complication associated with high mortality in patients. Immune cells and cytokines have recently been described to play essential roles in AKI pathogenesis. Plasmacytoid dendritic cells (pDCs) are a unique DC subset that specializes in type I interferon (IFN) production. Here, we showed that pDCs rapidly infiltrated the kidney in response to AKI and contributed to kidney damage by producing IFN-α. Deletion of pDCs using DTRBDCA2 transgenic (Tg) mice suppressed cisplatin-induced AKI, accompanied by marked reductions in proinflammatory cytokine production, immune cell infiltration and apoptosis in the kidney. In contrast, adoptive transfer of pDCs during AKI exacerbated kidney damage. We further identified IFN-α as the key factor that mediated the functions of pDCs during AKI, as IFN-α neutralization significantly attenuated kidney injury. Furthermore, IFN-α produced by pDCs directly induced the apoptosis of renal tubular epithelial cells (TECs) in vitro. In addition, our data demonstrated that apoptotic TECs induced the activation of pDCs, which was inhibited in the presence of an apoptosis inhibitor. Furthermore, similar deleterious effects of pDCs were observed in an ischemia reperfusion (IR)-induced AKI model. Clinically, increased expression of IFN-α in kidney biopsies was observed in kidney transplants with AKI. Taken together, the results of our study reveal that pDCs play a detrimental role in AKI via IFN-α.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AKI was attenuated in DTRBDCA2 mice following cisplatin exposure.
Fig. 2: Adoptive transfer of pDCs aggravates AKI.
Fig. 3: pDCs aggravate AKI through IFN-α.
Fig. 4: pDCs induce apoptosis of TECs through IFN-α.
Fig. 5: pDCs are activated by factors released by apoptotic TECs.
Fig. 6: Depletion of pDCs prevents IR-induced AKI.

Similar content being viewed by others

References

  1. Yang, L. et al. Acute kidney injury in China: a cross-sectional survey. Lancet 386, 1465–71. (2015).

    PubMed  Google Scholar 

  2. Okusa, M. D., Rosner, M. H., Kellum, J. A. & Ronco, C. Therapeutic targets of human AKI: harmonizing human and animal AKI. J. Am. Soc. Nephrol. 27, 44–48 (2016).

    CAS  PubMed  Google Scholar 

  3. Lewington, A. J., Cerda, J. & Mehta, R. L. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 84, 457–467 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004).

    CAS  PubMed  Google Scholar 

  5. Saitoh, S. I. et al. TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells. Nat. Commun. 8, 1592 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471–485 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev. Immunol. 29, 163–183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gregorio, J. et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med. 207, 2921–2930 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Arai, Y. et al. Plasmacytoid dendritic cell activation and IFN-alpha production are prominent features of murine autoimmune pancreatitis and human IgG4-related autoimmune pancreatitis. J. Immunol. 195, 3033–3044 (2015).

    CAS  PubMed  Google Scholar 

  10. Tiberio, L. et al. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol. Immunol. 15, 346–52. (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lechner, J. et al. IFN-alpha induces barrier destabilization and apoptosis in renal proximal tubular epithelium. Am. J. Physiol. Cell Physiol. 294, C153–C160 (2008).

    CAS  PubMed  Google Scholar 

  12. Winterberg, P. D. et al. Reactive oxygen species and IRF1 stimulate IFNalpha production by proximal tubules during ischemic AKI. Am. J. Physiol. Ren. Physiol. 305, F164–F172 (2013).

    CAS  Google Scholar 

  13. Coroneos, E., Petrusevska, G., Varghese, F. & Truong, L. D. Focal segmental glomerulosclerosis with acute renal failure associated with alpha-interferon therapy. Am. J. Kidney Dis. 28, 888–892 (1996).

    CAS  PubMed  Google Scholar 

  14. Maazi, H. et al. Activated plasmacytoid dendritic cells regulate type 2 innate lymphoid cell-mediated airway hyperreactivity. J. Allergy Clin. Immunol. 141, 893–905.e6 (2018).

    CAS  PubMed  Google Scholar 

  15. Castellaneta, A. et al. Plasmacytoid dendritic cell-derived IFN-alpha promotes murine liver ischemia/reperfusion injury by induction of hepatocyte IRF-1. Hepatology 60, 267–277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruben, J. M. et al. Human plasmacytoid dendritic cells acquire phagocytic capacity by TLR9 ligation in the presence of soluble factors produced by renal epithelial cells. Kidney Int. 93, 355–64. (2018).

    CAS  PubMed  Google Scholar 

  17. De Palma, G. et al. The possible role of ChemR23/Chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int 79, 1228–1235 (2011).

    PubMed  Google Scholar 

  18. Rabb, H. et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 27, 371–379 (2016).

    CAS  PubMed  Google Scholar 

  19. Festa, B. P. et al. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat. Commun. 9, 161 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Deng, B. et al. The leukotriene B4-leukotriene B4 receptor axis promotes cisplatin-induced acute kidney injury by modulating neutrophil recruitment. Kidney Int 92, 89–100 (2017).

    CAS  PubMed  Google Scholar 

  21. Jang, H. R. & Rabb, H. Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11, 88–101 (2015).

    CAS  PubMed  Google Scholar 

  22. Guo, C. et al. DNA methylation protects against cisplatin-induced kidney injury by regulating specific genes, including interferon regulatory factor 8. Kidney Int. 92, 1194–1205 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Watarai, H. et al. PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon. Proc. Natl Acad. Sci. USA 105, 2993–2998 (2008).

    CAS  PubMed  Google Scholar 

  24. Castellano, G. et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Yan, K. et al. Toll-like receptor 3 and RIG-I-like receptor activation induces innate antiviral responses in mouse ovarian granulosa cells. Mol. Cell Endocrinol. 372, 73–85 (2013).

    CAS  PubMed  Google Scholar 

  26. Joshi, V. D. et al. A role for Stat1 in the regulation of lipopolysaccharide-induced interleukin-1beta expression. J. Interferon Cytokine Res. 26, 739–747 (2006).

    CAS  PubMed  Google Scholar 

  27. Zuidwijk, K. et al. Increased influx of myeloid dendritic cells during acute rejection is associated with interstitial fibrosis and tubular atrophy and predicts poor outcome. Kidney Int. 81, 64–75 (2012).

    CAS  PubMed  Google Scholar 

  28. Reich, B., Viehmann, S. F. & Kurts, C. Plasmacytoid dendritic cells: important players in human kidney allograft rejection. Kidney Int. 93, 301–303 (2018).

    PubMed  Google Scholar 

  29. Famulski, K. S. et al. Molecular phenotypes of acute kidney injury in kidney transplants. J. Am. Soc. Nephrol. 23, 948–958 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, J. & Dong, Z. Neutrophil extracellular traps in ischemic AKI: new way to kill. Kidney Int. 93, 303–305 (2018).

    PubMed  Google Scholar 

  31. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Kumar, S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 93, 27–40 (2018).

    CAS  PubMed  Google Scholar 

  33. Tanaka, S., Inoue, T., Hossack, J. A. & Okusa, M. D. Nonpharmacological, biomechanical approaches to control inflammation in acute kidney injury. Nephron 137, 277–281 (2017).

  34. Ramesh, G. & Reeves, W. B. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xia, C. Q. et al. Increased IFN-alpha-producing plasmacytoid dendritic cells (pDCs) in human Th1-mediated type 1 diabetes: pDCs augment Th1 responses through IFN-alpha production. J. Immunol. 193, 1024–1034 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Agalioti, T., Villablanca, E. J., Huber, S. & Gagliani, N. TH17cell plasticity: the role of dendritic cells and molecular mechanisms. J. Autoimmun. 87, 50–60 (2018).

    CAS  PubMed  Google Scholar 

  37. Gonzalez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kretschmer, S. & Leekirsch, M. A. Type I interferon-mediated autoinflammation and autoimmunity. Curr. Opin. Immunol. 49, 96–102 (2017).

    CAS  PubMed  Google Scholar 

  39. Nakazawa, D. et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol. 28, 1753–1768 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith, N. et al. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat. Commun. 8, 14253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, Y. et al. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 26, 2647–2658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tullius, S. G. & Rabb, H. Improving the supply and quality of deceased-donor organs for transplantation. N. Engl. J. Med. 378, 1920–1929 (2018).

    PubMed  Google Scholar 

  43. Barabas, K., Milner, R., Lurie, D. & Adin, C. Cisplatin: a review of toxicities and therapeutic applications. Vet. Comp. Oncol. 6, 1–18 (2010).

    Google Scholar 

  44. Rizza, P., Moretti, F. & Belardelli, F. Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity. Autoimmunity 43, 204–209 (2010).

    CAS  PubMed  Google Scholar 

  45. Launay-Vacher, V. et al. Prevalence of Renal Insufficiency in cancer patients and implications for anticancer drug management: the renal insufficiency and anticancer medications (IRMA) study. Cancer 110, 1376–1384 (2007).

    CAS  PubMed  Google Scholar 

  46. Aapro, M. & Launay-Vacher, V. Importance of monitoring renal function in patients with cancer. Cancer Treat. Rev. 38, 235–240 (2012).

    PubMed  Google Scholar 

  47. Rascio, F. et al. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation. J. Pathol. 237, 72–84 (2015).

    CAS  PubMed  Google Scholar 

  48. Wei, D. et al. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 7, 17479–17491. (2016).

    Google Scholar 

  49. Swiecki, M., Gilfillan, S., Vermi, W., Wang, Y. & Colonna, M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33, 955–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chan, A. J. et al. Innate IL-17A-producing leukocytes promote acute kidney injury via inflammasome and Toll-like receptor activation. Am. J. Pathol. 184, 1411–1418 (2014).

    CAS  PubMed  Google Scholar 

  51. Wendland, M. et al. CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proc. Natl Acad. Sci. USA 104, 6347–6352 (2007).

    CAS  PubMed  Google Scholar 

  52. Ma, S. et al. Granulocyte and monocyte adsorptive apheresis ameliorates sepsis in rats. Intensive Care Med. Exp. 5, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No: 81870462 and 81470990 to F. Ding; No: 91642112 to R.H.; and No: 31600715 to Y.L.L.); The Science and Technology Commission of Shanghai Municipality (No: 18140903300 to R.H.; No: 17441904200 and 19441909300 to F.D.); Shanghai Ninth People’s Hospital Clinical Research Program (No: JYLJ007 to F.D.); Shanghai Ninth People’s Hospital MDT Program (2017–1–019 to F.D.); Major Special Projects of the Ministry of Science and Technology (2018ZX10302207 to Y.L.L.); Development Project of Shanghai Peak Disciplines-Integrative Medicine (20180101 to Y.L.L.); Doctoral Innovation Fund Projects from Shanghai Jiao Tong University School of Medicine (BXJ201730 to B.D.); and Fundamental Research Program Funding of Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (JYZZ082B to B.D.).

Author information

Authors and Affiliations

Authors

Contributions

F.D. and R.H. conceived and designed the research; B.D., Y.S., S.M., Q.C., W.J., B.L., T.Y. and P.H. performed the research; B.D., R.H. and F.D. analyzed the data; B.D. and Y.L. wrote the manuscript.

Corresponding authors

Correspondence to Rui He or Feng Ding.

Ethics declarations

Competing interests

The authors declare no competing interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Lin, Y., Chen, Y. et al. Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-α. Cell Mol Immunol 18, 219–229 (2021). https://doi.org/10.1038/s41423-019-0343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0343-9

Keywords

This article is cited by

Search

Quick links