Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CUL4B negatively regulates Toll-like receptor-triggered proinflammatory responses by repressing Pten transcription

Abstract

Toll-like receptors (TLRs) play critical roles in innate immunity and inflammation. The molecular mechanisms by which TLR signaling is fine-tuned remain to be completely elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING E3 ligase complex (CRL4B), has been shown to regulate diverse developmental and physiological processes by catalyzing monoubiquitination for histone modification or polyubiquitination for proteasomal degradation. Here, we identified the role of CUL4B as an intrinsic negative regulator of the TLR-triggered inflammatory response. Deletion of CUL4B in macrophages increased the production of proinflammatory cytokines and decreased anti-inflammatory cytokine IL-10 production in response to pathogens that activate TLR3, TLR4, or TLR2. Myeloid cell-specific Cul4b knockout mice were more susceptible to septic shock when challenged with lipopolysaccharide, polyinosinic-polycytidylic acid or Salmonella typhimurium infection. We further demonstrated that enhanced TLR-induced inflammatory responses in the absence of CUL4B were mediated by increased GSK3β activity. Suppression of GSK3β activity efficiently blocked the TLR-triggered increase in proinflammatory cytokine production and attenuated TLR-triggered death in Cul4b mutant mice. Mechanistically, CUL4B was found to negatively regulate TLR-triggered signaling by epigenetically repressing the transcription of Pten, thus maintaining the anti-inflammatory PI3K-AKT-GSK3β pathway. The upregulation of PTEN caused by CUL4B deletion led to uncontrolled GSK3β activity and excessive inflammatory immune responses. Thus, our findings indicate that CUL4B functions to restrict TLR-triggered inflammatory responses through regulating the AKT-GSK3β pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    CAS  PubMed  Google Scholar 

  2. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    CAS  PubMed  Google Scholar 

  3. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  4. Savva, A. & Roger, T. Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases. Front. Immunol. 4, 387 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Broz, P. & Monack, D. M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 13, 551–565 (2013).

    CAS  PubMed  Google Scholar 

  6. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  7. O’Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    PubMed  Google Scholar 

  8. Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    CAS  PubMed  Google Scholar 

  9. Dugo, L. et al. Insulin reduces the multiple organ injury and dysfunction caused by coadministration of lipopolysaccharide and peptidoglycan independently of blood glucose: role of glycogen synthase kinase-3beta inhibition. Crit. Care Med. 34, 1489–1496 (2006).

    CAS  PubMed  Google Scholar 

  10. Jope, R. S., Yuskaitis, C. J. & Beurel, E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem. Res. 32, 577–595 (2007).

    CAS  PubMed  Google Scholar 

  11. Rayasam, G. V., Tulasi, V. K., Sodhi, R., Davis, J. A. & Ray, A. Glycogen synthase kinase 3: more than a namesake. Br. J. Pharm. 156, 885–898 (2009).

    CAS  Google Scholar 

  12. Beurel, E., Michalek, S. M. & Jope, R. S. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 31, 24–31 (2010).

    CAS  PubMed  Google Scholar 

  13. Woodgett, J. R. Judging a protein by more than its name: GSK-3. Sci. STKE 2001, re12 (2001).

    CAS  PubMed  Google Scholar 

  14. Wang, H., Brown, J. & Martin, M. Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 53, 130–140 (2011).

    CAS  PubMed  Google Scholar 

  15. Ko, R., Park, J. H., Ha, H., Choi, Y. & Lee, S. Y. Glycogen synthase kinase 3beta ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat. Commun. 6, 6765 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin, M., Rehani, K., Jope, R. S. & Michalek, S. M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777–784 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu, X. et al. IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24, 563–574 (2006).

    CAS  PubMed  Google Scholar 

  18. Zhang, Y. et al. Activation of vascular endothelial growth factor receptor-3 in macrophages restrains TLR4-NF-kappaB signaling and protects against endotoxin shock. Immunity 40, 501–514 (2014).

    PubMed  Google Scholar 

  19. Jackson, S. & Xiong, Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem. Sci. 34, 562–570 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarikas, A., Hartmann, T. & Pan, Z. Q. The cullin protein family. Genome Biol. 12, 220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hannah, J. & Zhou, P. Distinct and overlapping functions of the cullin E3 ligase scaffolding proteins CUL4A and CUL4B. Gene 573, 33–45 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tarpey, P. S. et al. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am. J. Hum. Genet. 80, 345–352 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zou, Y. et al. Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am. J. Hum. Genet. 80, 561–566 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kerzendorfer, C. et al. CUL4B-deficiency in humans: understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mech. Ageing Dev. 132, 366–373 (2011).

    CAS  PubMed  Google Scholar 

  25. Badura-Stronka, M. et al. A novel nonsense mutation in CUL4B gene in three brothers with X-linked mental retardation syndrome. Clin. Genet. 77, 141–144 (2010).

    CAS  PubMed  Google Scholar 

  26. Isidor, B., Pichon, O., Baron, S., David, A. & Le Caignec, C. Deletion of the CUL4B gene in a boy with mental retardation, minor facial anomalies, short stature, hypogonadism, and ataxia. Am. J. Med. Genet. A 152a, 175–180 (2010).

    PubMed  Google Scholar 

  27. Lee, J. & Zhou, P. Pathogenic role of the CRL4 ubiquitin ligase in human disease. Front Oncol. 2, 21 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. Jiang, B. et al. Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development. PLoS ONE 7, e37070 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, L. et al. Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res. 22, 1258–1269 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian, Y. et al. The CUL4B/AKT/beta-catenin axis restricts the accumulation of myeloid-derived suppressor cells to prohibit the establishment of a tumor-permissive microenvironment. Cancer Res. 75, 5070–5083 (2015).

    CAS  PubMed  Google Scholar 

  31. Zhao, W. et al. Lack of CUL4B leads to increased abundance of GFAP-positive cells that is mediated by PTGDS in mouse brain. Hum. Mol. Genet. 24, 4686–4697 (2015).

    CAS  PubMed  Google Scholar 

  32. Zhao, Y. & Sun, Y. CUL4B ubiquitin ligase in mouse development: a model for human X-linked mental retardation syndrome? Cell Res. 22, 1224–1226 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, P. et al. Lack of CUL4B in adipocytes promotes PPARgamma-mediated adipose tissue expansion and insulin sensitivity. Diabetes 66, 300–313 (2017).

    CAS  PubMed  Google Scholar 

  34. Li, X. et al. Cullin 4B protein ubiquitin ligase targets peroxiredoxin III for degradation. J. Biol. Chem. 286, 32344–32354 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, Z. et al. CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen species positive feedback loop. Free Radic. Biol. Med. 79, 1–13 (2015).

    CAS  PubMed  Google Scholar 

  36. He, F. et al. X-linked intellectual disability gene CUL4B targets Jab1/CSN5 for degradation and regulates bone morphogenetic protein signaling. Biochim. Biophys. Acta 1832, 595–605 (2013).

    CAS  PubMed  Google Scholar 

  37. Hu, H. et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell 22, 781–795 (2012).

    CAS  PubMed  Google Scholar 

  38. Xia, M. et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 39, 470–481 (2013).

    CAS  PubMed  Google Scholar 

  39. Han, C. et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat. Immunol. 11, 734–742 (2010).

    CAS  PubMed  Google Scholar 

  40. Yuan, J. et al. CUL4B activates Wnt/beta-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J. Pathol. 235, 784–795 (2015).

    CAS  PubMed  Google Scholar 

  41. Ko, R. & Lee, S. Y. Glycogen synthase kinase 3beta in Toll-like receptor signaling. BMB Rep. 49, 305–310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, P., Katz, J. & Michalek, S. M. Glycogen synthase kinase-3beta (GSK3beta) inhibition suppresses the inflammatory response to Francisella infection and protects against tularemia in mice. Mol. Immunol. 46, 677–687 (2009).

    CAS  PubMed  Google Scholar 

  43. Ji, Q. et al. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression. J. Cell Sci. 127, 4679–4691 (2014).

    PubMed  Google Scholar 

  44. Hung, M. H., Jian, Y. R., Tsao, C. C., Lin, S. W. & Chuang, Y. H. Enhanced LPS-induced peritonitis in mice deficiency of cullin 4B in macrophages. Genes Immun. 15, 404–412 (2014).

    CAS  PubMed  Google Scholar 

  45. Wang, H., Kumar, A., Lamont, R. J. & Scott, D. A. GSK3beta and the control of infectious bacterial diseases. Trends Microbiol. 22, 208–217 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, H. et al. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells. J. Immunol. 191, 1164–1174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mulholland, D. J., Dedhar, S., Wu, H. & Nelson, C. C. PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer. Oncogene 25, 329–337 (2006).

    CAS  PubMed  Google Scholar 

  48. Brown, J., Wang, H., Hajishengallis, G. N. & Martin, M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 90, 417–427 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weichhart, T. et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577 (2008).

    CAS  PubMed  Google Scholar 

  50. Zou, Y. et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J. Biol. Chem. 284, 33320–33332 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu, Z. et al. Upregulation of IL-6 in CUL4B-deficient myeloid-derived suppressive cells increases the aggressiveness of cancer cells. Oncogene 38, 5860–5872 (2019).

  52. Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Chengjiang Gao and Prof. Wei Zhao for their critically reading of the paper. This work was supported by the National Natural Science Foundation of China (81571523 and 31872810), the Natural Science Foundation of Shandong Province (ZR2016HZ01), and the Key Research and Development Program of Shandong Province (2016ZDJS07A08 and 2017GSF218027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoqin Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Li, P., Qin, L. et al. CUL4B negatively regulates Toll-like receptor-triggered proinflammatory responses by repressing Pten transcription. Cell Mol Immunol 18, 339–349 (2021). https://doi.org/10.1038/s41423-019-0323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0323-0

Keywords

This article is cited by

Search

Quick links