Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393–407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dobson, R. & Giovannoni, G. Multiple sclerosis - a review. Eur. J. Neurol. 26, 27–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gholamzad, M. et al. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm. Res. 68, 25–38 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Olsson, T., Barcellos, L. F. & Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Baranzini, S. E. & Oksenberg, J. R. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 33, 960–970 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  CAS  Google Scholar 

  8. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann. Neurol. 61, 504–513 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ascherio, A. & Munger, K. L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  PubMed  Google Scholar 

  10. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu Rev. Immunol. 23, 683–747 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Ransohoff, R. M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074–1077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rangachari, M., Kerfoot, S. M., Arbour, N. & Alvarez, J. I. Editorial: Lymphocytes in MS and EAE: more than just a CD4( + ) World. Front Immunol. 8, 133 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rahmanzadeh R., Bruck W., Minagar A., Sahraian M. A. Multiple sclerosis pathogenesis: missing pieces of an old puzzle. Rev. Neurosci. 30, 67–83 (2018).

  14. Vasileiadis, G. K. et al. Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? Auto. Immun. Highlights 9, 9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Booss, J., Esiri, M. M., Tourtellotte, W. W. & Mason, D. Y. Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 62, 219–232 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Hauser, S. L. et al. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol. 19, 578–587 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Sawcer, S., Franklin, R. J. & Ban, M. Multiple sclerosis genetics. Lancet Neurol. 13, 700–709 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Krishnamoorthy, G. & Wekerle, H. EAE: an immunologist’s magic eye. Eur. J. Immunol. 39, 2031–2035 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Cao, Y. et al. Functional inflammatory profiles distinguish myelin-reactive T cells from patients with multiple sclerosis. Sci. Transl. Med. 7, 287ra274 (2015).

    Article  CAS  Google Scholar 

  20. Mohme, M. et al. HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. Brain 136, 1783–1798 (2013).

    Article  PubMed  Google Scholar 

  21. van Oosten, B. W. et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49, 351–357 (1997).

    Article  PubMed  Google Scholar 

  22. Zhang, H., Podojil, J. R., Luo, X. & Miller, S. D. Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. J. Immunol. 181, 4638–4647 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Lafaille, J. J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78, 399–408 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. O’Connor, R. A. & Anderton, S. M. Foxp3 + regulatory T cells in the control of experimental CNS autoimmune disease. J. Neuroimmunol. 193, 1–11 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Salou, M., Nicol, B., Garcia, A. & Laplaud, D. A. Involvement of CD8( + ) T cells in multiple sclerosis. Front Immunol. 6, 604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jersild, C., Svejgaard, A. & Fog, T. HL-A antigens and multiple sclerosis. Lancet 1, 1240–1241 (1972).

    Article  CAS  PubMed  Google Scholar 

  27. Naito, S., Namerow, N., Mickey, M. R. & Terasaki, P. I. Multiple sclerosis: association with HL-A3. Tissue Antigens 2, 1–4 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. Fogdell-Hahn, A., Ligers, A., Gronning, M., Hillert, J. & Olerup, O. Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55, 140–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Harbo, H. F. et al. Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 63, 237–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Salou, M. et al. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann. Clin. Transl. Neurol. 2, 609–622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Babbe, H. et al. Clonal expansions of CD8( + ) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Junker, A. et al. Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130, 2789–2799 (2007).

    Article  PubMed  Google Scholar 

  33. Ifergan, I. et al. Central nervous system recruitment of effector memory CD8 + T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 134, 3560–3577 (2011).

    Article  PubMed  Google Scholar 

  34. Annibali, V. et al. CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134, 542–554 (2011).

    Article  PubMed  Google Scholar 

  35. Jilek, S. et al. CSF enrichment of highly differentiated CD8 + T cells in early multiple sclerosis. Clin. Immunol. 123, 105–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Keller, A. N., Corbett, A. J., Wubben, J. M., McCluskey, J. & Rossjohn, J. MAIT cells and MR1-antigen recognition. Curr. Opin. Immunol. 46, 66–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Lantz, O. & Legoux, F. MAIT cells: an historical and evolutionary perspective. Immunol. Cell Biol. 96, 564–572 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, D. et al. Myelin antigen-specific CD8+T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 166, 7579–7587 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Huseby, E. S. et al. A pathogenic role for myelin-specific CD8( + ) T cells in a model for multiple sclerosis. J. Exp. Med. 194, 669–676 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huber, M. et al. IL-17A secretion by CD8 + T cells supports Th17-mediated autoimmune encephalomyelitis. J. Clin. Invest. 123, 247–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Najafian, N. et al. Regulatory functions of CD8 + CD28- T cells in an autoimmune disease model. J. Clin. Invest. 112, 1037–1048 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Linker, R. A. et al. EAE in beta-2 microglobulin-deficient mice: axonal damage is not dependent on MHC-I restricted immune responses. Neurobiol. Dis. 19, 218–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ortega, S. B. et al. The disease-ameliorating function of autoregulatory CD8 T cells is mediated by targeting of encephalitogenic CD4 T cells in experimental autoimmune encephalomyelitis. J. Immunol. 191, 117–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Weiss, H. A., Millward, J. M. & Owens, T. CD8 + T cells in inflammatory demyelinating disease. J. Neuroimmunol. 191, 79–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. York, N. R. et al. Immune regulatory CNS-reactive CD8 + T cells in experimental autoimmune encephalomyelitis. J. Autoimmun. 35, 33–44 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, H., Braunstein, N. S., Yu, B., Winchester, R. & Chess, L. CD8 + T cells control the TH phenotype of MBP-reactive CD4 + T cells in EAE mice. Proc. Natl Acad. Sci. USA 98, 6301–6306 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang, X. et al. Regulation of immunity by a novel population of Qa-1-restricted CD8alphaalpha + TCRalphabeta + T cells. J. Immunol. 177, 7645–7655 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Varthaman, A. et al. Physiological induction of regulatory Qa-1-restricted CD8 + T cells triggered by endogenous CD4 + T cell responses. PLoS ONE 6, e21628 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, X. et al. Targeting non-classical myelin epitopes to treat experimental autoimmune encephalomyelitis. Sci. Rep. 6, 36064 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tyler, A. F., Mendoza, J. P., Firan, M. & Karandikar, N. J. CD8( + ) T cells are required for glatiramer acetate therapy in autoimmune demyelinating disease. PLoS ONE 8, e66772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sinha, S., Boyden, A. W., Itani, F. R., Crawford, M. P. & Karandikar, N. J. CD8( + ) T-cells as immune regulators of multiple sclerosis. Front Immunol. 6, 619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Antel, J. P. et al. Comparison of T8 + cell-mediated suppressor and cytotoxic functions in multiple sclerosis. J. Neuroimmunol. 12, 215–224 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Balashov, K. E., Khoury, S. J., Hafler, D. A. & Weiner, H. L. Inhibition of T cell responses by activated human CD8 + T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J. Clin. Invest. 95, 2711–2719 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Kaer, L. Comeback kids: CD8( + ) suppressor T cells are back in the game. J. Clin. Invest 120, 3432–3434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tennakoon, D. K. et al. Therapeutic induction of regulatory, cytotoxic CD8 + T cells in multiple sclerosis. J. Immunol. 176, 7119–7129 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Krumbholz, M., Derfuss, T., Hohlfeld, R. & Meinl, E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat. Rev. Neurol. 8, 613–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Claes, N., Fraussen, J., Stinissen, P., Hupperts, R. & Somers, V. B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions. Front Immunol. 6, 642 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitsdoerffer, M. & Peters, A. Tertiary lymphoid organs in central nervous system autoimmunity. Front Immunol. 7, 451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McLaughlin, K. A. & Wucherpfennig, K. W. B cells and autoantibodies in the pathogenesis of multiple sclerosis and related inflammatory demyelinating diseases. Adv. Immunol. 98, 121–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Staun-Ram, E. & Miller, A. Effector and regulatory B cells in multiple sclerosis. Clin. Immunol. 184, 11–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Piddlesden, S. J., Lassmann, H., Zimprich, F., Morgan, B. P. & Linington, C. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am. J. Pathol. 143, 555–564 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Elliott, C. et al. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 135, 1819–1833 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Heigl, F. et al. Immunoadsorption in steroid-refractory multiple sclerosis: clinical experience in 60 patients. Atheroscler. Suppl. 14, 167–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Keegan, M. et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366, 579–582 (2005).

    Article  PubMed  Google Scholar 

  65. Piccio, L. et al. Changes in B- and T-lymphocyte and chemokine levels with rituximab treatment in multiple sclerosis. Arch. Neurol. 67, 707–714 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Michel, L. et al. B cells in the multiple sclerosis central nervous system: trafficking and contribution to CNS-compartmentalized inflammation. Front. Immunol. 6, 636 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Adler, L. N. et al. The other function: class II-Restricted Antigen Presentation by B Cells. Front. Immunol. 8, 319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harp, C. T., Lovett-Racke, A. E., Racke, M. K., Frohman, E. M. & Monson, N. L. Impact of myelin-specific antigen presenting B cells on T cell activation in multiple sclerosis. Clin. Immunol. 128, 382–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Jelcic, I. et al. Memory B cells activate Brain-Homing, autoreactive CD4( + ) T cells in multiple sclerosis. Cell 175, 85–100 e123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ransohoff, R. M. Immune-cell crosstalk in multiple sclerosis. Nature 563, 194–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Shen, P. & Fillatreau, S. Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 15, 441–451 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Mauri, C. & Bosma, A. Immune regulatory function of B cells. Annu Rev. Immunol. 30, 221–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Li, R. et al. Cytokine-defined B cell responses as therapeutic targets in multiple sclerosis. Front Immunol. 6, 626 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Kurosaki, T. Paradox of B cell-targeted therapies. J. Clin. Invest 118, 3260–3263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wolf, S. D., Dittel, B. N., Hardardottir, F. & Janeway, C. A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Matsushita, T., Yanaba, K., Bouaziz, J. D., Fujimoto, M. & Tedder, T. F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pierson, E. R., Stromnes, I. M. & Goverman, J. M. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J. Immunol. 192, 929–939 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Molnarfi, N. et al. MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J. Exp. Med. 210, 2921–2937 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parker Harp, C. R. et al. B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. J. Immunol. 194, 5077–5084 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Barr, T. A. et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 209, 1001–1010 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Matsushita, T., Horikawa, M., Iwata, Y. & Tedder, T. F. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J. Immunol. 185, 2240–2252 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Yoshizaki, A. et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491, 264–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Korniotis, S. et al. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells. Nat. Commun. 7, 12134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hong, J. et al. TLR9 mediated regulatory B10 cell amplification following sub-total body irradiation: implications in attenuating EAE. Mol. Immunol. 83, 52–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Kala, M. et al. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp. Neurol. 221, 136–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Van Kaer, L. Glatiramer acetate for treatment of MS: regulatory B cells join the cast of players. Exp. Neurol. 227, 19–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Ray, A., Wang, L. & Dittel, B. N. IL-10-independent regulatory B-cell subsets and mechanisms of action. Int Immunol. 27, 531–536 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Ray, A. & Dittel, B. N. Mechanisms of regulatory B cell function in autoimmune and inflammatory diseases beyond IL-10. J. Clin. Med 6, E12 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Pennati, A. et al. Regulatory B cells induce formation of IL-10-expressing T cells in mice with autoimmune neuroinflammation. J. Neurosci. 36, 12598–12610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Simoni, Y. & Newell, E. W. Dissecting human ILC heterogeneity: more than just three subsets. Immunology 153, 297–303 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Gasteiger, G. & Rudensky, A. Y. Interactions between innate and adaptive lymphocytes. Nat. Rev. Immunol. 14, 631–639 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi, F. D. & Van Kaer, L. Reciprocal regulation between natural killer cells and autoreactive T cells. Nat. Rev. Immunol. 6, 751–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97, 3146–3151 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Shi, F. D., Ljunggren, H. G., La Cava, A. & Van Kaer, L. Organ-specific features of natural killer cells. Nat. Rev. Immunol. 11, 658–671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodriguez-Martin, E. et al. Natural killer cell subsets in cerebrospinal fluid of patients with multiple sclerosis. Clin. Exp. Immunol. 180, 243–249 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Plantone, D. et al. Circulating CD56dim NK cells expressing perforin are increased in progressive multiple sclerosis. J. Neuroimmunol. 265, 124–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Saraste, M., Irjala, H. & Airas, L. Expansion of CD56Bright natural killer cells in the peripheral blood of multiple sclerosis patients treated with interferon-beta. Neurol. Sci. 28, 121–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Bielekova, B. et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 5941–5946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Elkins, J. et al. CD56(bright) natural killer cells and response to daclizumab HYP in relapsing-remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 2, e65 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Putzki, N., Baranwal, M. K., Tettenborn, B., Limmroth, V. & Kreuzfelder, E. Effects of natalizumab on circulating B cells, T regulatory cells and natural killer cells. Eur. Neurol. 63, 311–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Gross, C. C. et al. Regulatory functions of natural killer cells in multiple sclerosis. Front Immunol. 7, 606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nielsen, N., Odum, N., Urso, B., Lanier, L. L. & Spee, P. Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4 + T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS ONE 7, e31959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gross, C. C. et al. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc. Natl Acad. Sci. USA 113, E2973–E2982 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M. & Tabira, T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med 186, 1677–1687 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xu, W., Fazekas, G., Hara, H. & Tabira, T. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 163, 24–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Matsumoto, Y. et al. Role of natural killer cells and TCR gamma delta T cells in acute autoimmune encephalomyelitis. Eur. J. Immunol. 28, 1681–1688 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Hao, J. et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J. Exp. Med 207, 1907–1921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Winkler-Pickett, R. et al. In vivo regulation of experimental autoimmune encephalomyelitis by NK cells: alteration of primary adaptive responses. J. Immunol. 180, 4495–4506 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Edwards, S. C., McGinley, A. M., McGuinness, N. C. & Mills, K. H. gammadelta T cells and NK cells - distinct pathogenic roles as innate-like immune cells in CNS autoimmunity. Front Immunol. 6, 455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J. 20, 896–905 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Leavenworth, J. W. et al. Analysis of the cellular mechanism underlying inhibition of EAE after treatment with anti-NKG2A F(ab’)2. Proc. Natl Acad. Sci. USA 107, 2562–2567 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jiang, W. et al. Acetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages. Proc. Natl Acad. Sci. USA 114, E6202–E6211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu, Q. et al. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat. Neurosci. 19, 243–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Withers, D. R. Lymphoid tissue inducer cells. Curr. Biol. 21, R381–R382 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Strober, W. The LTi cell, an immunologic chameleon. Immunity 33, 650–652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pikor, N. B., Prat, A., Bar-Or, A. & Gommerman, J. L. Meningeal tertiary lymphoid tissues and multiple sclerosis: a gathering place for diverse types of immune cells during CNS autoimmunity. Front. Immunol. 6, 657 (2015).

    PubMed  Google Scholar 

  121. Perry, J. S. et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci. Transl. Med. 4, 145ra106 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Serafini, B. et al. RORgammat expression and lymphoid neogenesis in the brain of patients with secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 75, 877–888 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Degn, M. et al. Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis. Mult. Scler. 22, 1013–1020 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Gross, C. C. et al. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Mult. Scler. 23, 1025–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Hatfield, J. K. & Brown, M. A. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol. 297, 69–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Columba-Cabezas, S. et al. Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin beta receptor-Ig fusion protein. J. Neuroimmunol. 179, 76–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Russi, A. E., Walker-Caulfield, M. E., Ebel, M. E. & Brown, M. A. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J. Immunol. 194, 5609–5613 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Russi, A. E., Ebel, M. E., Yang, Y. & Brown, M. A. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc. Natl Acad. Sci. USA 115, E1520–E1529 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kwong, B. et al. T-bet-dependent NKp46( + ) innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nat. Immunol. 18, 1117–1127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Brown, M. A. & Russi, A. E. (.T)Betting on innate lymphoid cells in CNS inflammatory disease. Nat. Immunol. 18, 1063–1064 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Lanier, L. L. Shades of grey--the blurring view of innate and adaptive immunity. Nat. Rev. Immunol. 13, 73–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Chien, Y. H., Meyer, C. & Bonneville, M. gammadelta T cells: first line of defense and beyond. Annu Rev. Immunol. 32, 121–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Van Kaer, L. et al. Recognition of MHC TL gene products by gamma delta T cells. Immunol. Rev. 120, 89–115 (1991).

    Article  PubMed  Google Scholar 

  136. Shimonkevitz, R., Colburn, C., Burnham, J. A., Murray, R. S. & Kotzin, B. L. Clonal expansions of activated gamma/delta T cells in recent-onset multiple sclerosis. Proc. Natl Acad. Sci. USA 90, 923–927 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wucherpfennig, K. W. et al. Gamma delta T-cell receptor repertoire in acute multiple sclerosis lesions. Proc. Natl Acad. Sci. USA 89, 4588–4592 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Freedman, M. S., Ruijs, T. C., Selin, L. K. & Antel, J. P. Peripheral blood gamma-delta T cells lyse fresh human brain-derived oligodendrocytes. Ann. Neurol. 30, 794–800 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Zeine, R. et al. Mechanism of gammadelta T cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J. Neuroimmunol. 87, 49–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  140. Ponomarev, E. D. et al. Gamma delta T cell regulation of IFN-gamma production by central nervous system-infiltrating encephalitogenic T cells: correlation with recovery from experimental autoimmune encephalomyelitis. J. Immunol. 173, 1587–1595 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Reynolds, J. M., Martinez, G. J., Chung, Y. & Dong, C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc. Natl Acad. Sci. USA 109, 13064–13069 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Olive, C. Gamma delta T cell receptor variable region usage during the development of experimental allergic encephalomyelitis. J. Neuroimmunol. 62, 1–7 (1995).

    Article  CAS  PubMed  Google Scholar 

  143. O’Brien, R. L. & Born, W. K. gammadelta T cell subsets: a link between TCR and function? Semin. Immunol. 22, 193–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Malik, S., Want, M. Y. & Awasthi, A. The emerging roles of gamma-delta T cells in tissue inflammation in experimental autoimmune encephalomyelitis. Front. Immunol. 7, 14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. McGinley A. M., Edwards S. C., Raverdeau M., Mills K. H. G. Th17cells, gammadelta T cells and their interplay in EAE and multiple sclerosis. J. Autoimmun. pii: S0896-8411, 30007-6 (2018).

  146. Odyniec, A. et al. Gammadelta T cells enhance the expression of experimental autoimmune encephalomyelitis by promoting antigen presentation and IL-12 production. J. Immunol. 173, 682–694 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Rajan, A. J., Gao, Y. L., Raine, C. S. & Brosnan, C. F. A pathogenic role for gamma delta T cells in relapsing-remitting experimental allergic encephalomyelitis in the SJL mouse. J. Immunol. 157, 941–949 (1996).

    CAS  PubMed  Google Scholar 

  148. Dandekar, A. A. & Perlman, S. Virus-induced demyelination in nude mice is mediated by gamma delta T cells. Am. J. Pathol. 161, 1255–1263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Petermann, F. et al. gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33, 351–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Spahn, T. W., Issazadah, S., Salvin, A. J. & Weiner, H. L. Decreased severity of myelin oligodendrocyte glycoprotein peptide 33 - 35-induced experimental autoimmune encephalomyelitis in mice with a disrupted TCR delta chain gene. Eur. J. Immunol. 29, 4060–4071 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Blink, S. E. et al. gammadelta T cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis. Cell Immunol. 290, 39–51 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Van Kaer, L., Parekh, V. V. & Wu, L. Invariant natural killer T cells as sensors and managers of inflammation. Trends Immunol. 34, 50–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Van Kaer, L. & Wu, L. Therapeutic potential of invariant natural killer T cells in autoimmunity. Front. Immunol. 9, 519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kumar, V. & Delovitch, T. L. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 142, 321–336 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Illes, Z. et al. Differential expression of NK T cell V alpha 24J alpha Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J. Immunol. 164, 4375–4381 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. van der Vliet, H. J. et al. Circulating V(alpha24 + ) Vbeta11 + NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 100, 144–148 (2001).

    Article  PubMed  Google Scholar 

  162. Gigli, G., Caielli, S., Cutuli, D. & Falcone, M. Innate immunity modulates autoimmunity: type 1 interferon-beta treatment in multiple sclerosis promotes growth and function of regulatory invariant natural killer T cells through dendritic cell maturation. Immunology 122, 409–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sakuishi, K., Miyake, S. & Yamamura, T. Role of NK cells and invariant NKT cells in multiple sclerosis. Results Probl. Cell Differ. 51, 127–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Araki, M. et al. Th2 bias of CD4 + NKT cells derived from multiple sclerosis in remission. Int. Immunol. 15, 279–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Yoshimoto, T., Bendelac, A., Hu-Li, J. & Paul, W. E. Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+T cells that promptly produce interleukin 4. Proc. Natl Acad. Sci. USA 92, 11931–11934 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Singh, A. K. et al. The natural killer T cell ligand alpha-galactosylceramide prevents or promotes pristane-induced lupus in mice. Eur. J. Immunol. 35, 1143–1154 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jahng, A. W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Furlan, R. et al. Activation of invariant NKT cells by alphaGalCer administration protects mice from MOG35-55-induced EAE: critical roles for administration route and IFN-gamma. Eur. J. Immunol. 33, 1830–1838 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Singh, A. K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Teige, A. et al. CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis. J. Immunol. 172, 186–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. Viale, R., Ware, R., Maricic, I., Chaturvedi, V. & Kumar, V. NKT cell subsets can exert opposing effects in autoimmunity, tumor surveillance and inflammation. Curr. Immunol. Rev. 8, 287–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Denney, L. et al. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J. Immunol. 189, 551–557 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Mars, L. T. et al. Cutting edge: V alpha 14-J alpha 281 NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J. Immunol. 168, 6007–6011 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Mars, L. T. et al. Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J. Immunol. 181, 2321–2329 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Yokote, H. et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am. J. Pathol. 173, 1714–1723 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Van Kaer, L., Wu, L. & Parekh, V. V. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Immunology 146, 1–10 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  178. Van Kaer, L. alpha-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat. Rev. Immunol. 5, 31–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Qian, G. et al. High doses of alpha-galactosylceramide potentiate experimental autoimmune encephalomyelitis by directly enhancing Th17 response. Cell Res. 20, 480–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Oh, S. J. & Chung, D. H. Invariant NKT cells producing IL-4 or IL-10, but not IFN-gamma, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response. J. Immunol. 186, 6815–6821 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  182. Shiozaki, M. et al. Synthesis and biological activity of hydroxylated analogues of KRN7000 (alpha-galactosylceramide). Carbohydr. Res. 370, 46–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Kojo, S. et al. Induction of regulatory properties in dendritic cells by Valpha14 NKT cells. J. Immunol. 175, 3648–3655 (2005).

    Article  CAS  PubMed  Google Scholar 

  184. Wang, J. et al. Ligand-dependent induction of noninflammatory dendritic cells by anergic invariant NKT cells minimizes autoimmune inflammation. J. Immunol. 181, 2438–2445 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Parekh, V. V., Wu, L., Olivares-Villagomez, D., Wilson, K. T. & Van Kaer, L. Activated invariant NKT cells control central nervous system autoimmunity in a mechanism that involves myeloid-derived suppressor cells. J. Immunol. 190, 1948–1960 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. La Cava, A., Van Kaer, L. & Fu Dong, S. CD4 + CD25 + Tregs and NKT cells: regulators regulating regulators. Trends Immunol. 27, 322–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Maricic, I., Halder, R., Bischof, F. & Kumar, V. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. J. Immunol. 193, 1035–1046 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Gherardin, N. A., McCluskey, J., Rossjohn, J. & Godfrey, D. I. The Diverse Family of MR1-Restricted T Cells. J. Immunol. 201, 2862–2871 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Chiba, A., Murayama, G. & Miyake, S. Mucosal-associated invariant T cells in autoimmune diseases. Front Immunol. 9, 1333 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Treiner, E. & Liblau, R. S. Mucosal-associated invariant T cells in multiple sclerosis: the jury is still out. Front Immunol. 6, 503 (2015).

    PubMed  PubMed Central  Google Scholar 

  191. Illes, Z., Shimamura, M., Newcombe, J., Oka, N. & Yamamura, T. Accumulation of Valpha7.2-Jalpha33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int Immunol. 16, 223–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  192. Abrahamsson, S. V. et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136, 2888–2903 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Willing, A. et al. CD8( + ) MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur. J. Immunol. 44, 3119–3128 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Held, K. et al. alphabeta T-cell receptors from multiple sclerosis brain lesions show MAIT cell-related features. Neurol. Neuroimmunol. Neuroinflamm. 2, e107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Salou, M. et al. Neuropathologic, phenotypic and functional analyses of mucosal associated invariant T cells in multiple sclerosis. Clin. Immunol. 166-167, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  196. Miyazaki, Y., Miyake, S., Chiba, A., Lantz, O. & Yamamura, T. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int Immunol. 23, 529–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  197. Sugimoto, C. et al. The dynamics of mucosal-associated invariant T cells in multiple sclerosis. + 5, 1259 (2016).

    PubMed  PubMed Central  Google Scholar 

  198. Willing, A., Jager, J., Reinhardt, S., Kursawe, N. & Friese, M. A. Production of IL-17 by MAIT cells is increased in multiple sclerosis and is associated with IL-7 receptor expression. J. Immunol. 200, 974–982 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Croxford, J. L., Miyake, S., Huang, Y. Y., Shimamura, M. & Yamamura, T. Invariant V(alpha)19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Hardy, R. R. & Hayakawa, K. Perspectives on fetal derived CD5 + B1 B cells. Eur. J. Immunol. 45, 2978–2984 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Martin, F. & Kearney, J. F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  202. Zhang, X. Regulatory functions of innate-like B cells. Cell Mol. Immunol. 10, 113–121 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lee-Chang, C. et al. Susceptibility to experimental autoimmune encephalomyelitis is associated with altered B-cell subsets distribution and decreased serum BAFF levels. Immunol. Lett. 135, 108–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Peterson, L. K., Tsunoda, I. & Fujinami, R. S. Role of CD5 + B-1 cells in EAE pathogenesis. Autoimmunity 41, 353–362 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work in the researchers’ lab was supported by grants from the NIH (DK104817 to L.V.K.), the Department of Defense (W81XWH-15-1-0543 to L.V.K.), and the National Multiple Sclerosis Society (60006625 to L.V.K.). J.L.P. was supported by predoctoral NIH training grants (T32HL069765 and T32AR059039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Van Kaer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Kaer, L., Postoak, J.L., Wang, C. et al. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 16, 531–539 (2019). https://doi.org/10.1038/s41423-019-0221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0221-5

Keywords

This article is cited by

Search

Quick links