Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Helper T cell differentiation

Abstract

CD4+ T helper cells are key regulators of host health and disease. In the original model, specialized subsets of T helper cells are generated following activation through lineage-specifying cytokines and transcriptional programs, but recent studies have revealed increasing complexities for CD4+ T-cell differentiation. Here, we first discuss CD4+ T-cell differentiation from a historical perspective by highlighting the major studies that defined the distinct subsets of T helper cells. We next describe the mechanisms underlying CD4+ T-cell differentiation, including cytokine-induced signaling and transcriptional networks. We then review current and emerging topics of differentiation, including the plasticity and heterogeneity of T cells, the tissue-specific effects, and the influence of cellular metabolism on cell fate decisions. Importantly, recent advances in cutting-edge approaches, especially systems biology tools, have contributed to new concepts and mechanisms underlying T-cell differentiation and will likely continue to advance this important research area of adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  3. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  PubMed  Google Scholar 

  4. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  PubMed  Google Scholar 

  5. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    CAS  PubMed  Google Scholar 

  6. Oppmann, B. et al. Novel p19 Protein Engages IL-12p40 to Form a Cytokine, IL-23, with Biological Activities Similar as Well as Distinct from IL-12. Immunity 13, 715–725 (2000).

    CAS  PubMed  Google Scholar 

  7. Patel, D. D. & Kuchroo, V. K. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43, 1040–1051 (2015).

    CAS  PubMed  Google Scholar 

  8. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    CAS  PubMed  Google Scholar 

  9. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, C. H. et al. Unique gene expression program of human germinal center T helper cells. Blood 104, 1952–1960 (2004).

    CAS  PubMed  Google Scholar 

  11. Bryant, V. L. et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5(+) T follicular helper cells. J. Immunol. 179, 8180–8190 (2007).

    CAS  PubMed  Google Scholar 

  12. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1551 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Reinhardt, R. L., Liang, H. –E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nature Immunology 10, 385–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    CAS  PubMed  Google Scholar 

  16. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  PubMed  Google Scholar 

  17. Veldhoen, M. et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    CAS  PubMed  Google Scholar 

  18. Dardalhon, V. et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  20. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 10, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  21. Zeng, H., Zhang, R., Jin, B. & Chen, L. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell. Mol. Immunol. 12, 566–571 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaplan, M. H., Hufford, M. M. & Olson, M. R. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 15, 295–307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    CAS  PubMed  Google Scholar 

  24. Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673 (1994).

    CAS  PubMed  Google Scholar 

  25. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  PubMed  Google Scholar 

  26. Chen, W. et al. Conversion of peripheral CD4+ CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  28. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  29. Mangan, P. R. et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  30. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314–324 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zielinski, C. E. et al. Pathogen-induced human T(H)17 cells produce IFN-gamma or IL-10 and are regulated by IL-1 beta. Nature 484, 514–U139 (2012).

    CAS  PubMed  Google Scholar 

  32. Zhou, L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    CAS  PubMed  Google Scholar 

  33. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chung, Y. et al. Critical Regulation of Early Th17 Cell Differentiation by Interleukin-1 Signaling. Immunity 30, 576–587 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ghoreschi, K. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467, 967–U144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McGeachy, M. J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    CAS  PubMed  Google Scholar 

  37. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996).

    CAS  PubMed  Google Scholar 

  38. Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    CAS  PubMed  Google Scholar 

  39. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    CAS  PubMed  Google Scholar 

  40. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    CAS  PubMed  Google Scholar 

  41. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    CAS  PubMed  Google Scholar 

  42. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    CAS  PubMed  Google Scholar 

  43. Davidson, T. S., DiPaolo, R. J., Andersson, J. & Shevach, E. M. Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp(3+) T regulatory cells. J. Immunol. 178, 4022–4026 (2007).

    CAS  PubMed  Google Scholar 

  44. Burchill, M. A., Yang, J. Y., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3(+) regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  PubMed  Google Scholar 

  45. Zhu, J. F., Cote-Sierra, J., Guo, L. Y. & Paul, W. E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003).

    CAS  PubMed  Google Scholar 

  46. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    CAS  PubMed  Google Scholar 

  47. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    CAS  PubMed  Google Scholar 

  48. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  49. Ouyang, W. et al. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    CAS  PubMed  Google Scholar 

  50. Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755–766 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    CAS  PubMed  Google Scholar 

  52. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    CAS  PubMed  Google Scholar 

  53. Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    CAS  PubMed  Google Scholar 

  54. Mullen, A. C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat. Immunol. 3, 652–658 (2002).

    CAS  PubMed  Google Scholar 

  55. Zhu, J. F. et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat. Immunol. 5, 1157–1165 (2004).

    CAS  PubMed  Google Scholar 

  56. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ivanov, II et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  58. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  62. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    CAS  PubMed  Google Scholar 

  63. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genetics 27, 18–20 (2001).

    CAS  PubMed  Google Scholar 

  64. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  65. Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 12, R75–81 (2000).

    Google Scholar 

  66. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  67. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  68. Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    CAS  PubMed  Google Scholar 

  69. Zhou, L. et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing ROR gamma t function. Nature 453, 236–U214 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate lfng and silence ll4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    CAS  PubMed  Google Scholar 

  73. Naoe, Y. et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf beta binding to the Il4 silencer. J. Exp. Med. 204, 1749–1755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    CAS  PubMed  Google Scholar 

  75. Rudra, D. et al. Runx-CBF beta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat. Immunol. 10, 1170–U1153 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kitoh, A. et al. Indispensable role of the Runx1-Cbf beta transcription complex for in vivo-suppressive function of FoxP3(+) regulatory T cells. Immunity 31, 609–620 (2009).

    CAS  PubMed  Google Scholar 

  77. Zhang, F. P., Meng, G. X. & Strober, W. Interactions among the transcription factors Runx1, ROR gamma t and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kano, S. I. et al. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and T(H)1 versus T-H-17 differentiation of CD4(+) T cells. Nat. Immunol. 9, 34–41 (2008).

    CAS  PubMed  Google Scholar 

  79. Rengarajan, J. et al. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195, 1003–1012 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl. Acad. Sci. USA 99, 11808–11812 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brustle, A. et al. The development of inflammatory T-H-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    PubMed  Google Scholar 

  82. Bollig, N. et al. Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. Proc. Natl. Acad. Sci. USA 109, 8664–8669 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Martins, G. A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7, 457–465 (2006).

    CAS  PubMed  Google Scholar 

  84. Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of T-FH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gabrysova, L. et al. c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4(+) T cells. Nat. Immunol. 19, 497–507 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rutz, S. et al. Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nat. Immunol. 12, 1238–1245 (2011).

    CAS  PubMed  Google Scholar 

  87. Xu, J. et al. c-Maf regulates IL-10 expression during Th17 polarization. J. Immunol. 182, 6226–6236 (2009).

    CAS  PubMed  Google Scholar 

  88. Ho, I. C., Hodge, M. R., Rooney, J. W. & Glimcher, L. H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  89. Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

    CAS  PubMed  Google Scholar 

  90. Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    CAS  PubMed  Google Scholar 

  91. Wheaton, J. D., Yeh, C. H. & Ciofani, M. Cutting edge: c-Maf is required for regulatory T cells to adopt RORgammat(+) and follicular phenotypes. J. Immunol. 199, 3931–3936 (2017).

    CAS  PubMed  Google Scholar 

  92. Yang, X. O. et al. T Helper 17 Lineage Differentiation Is Programmed by Orphan Nuclear Receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    CAS  PubMed  Google Scholar 

  93. Liu, X. et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 507, 513–518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Choi, Y. S. et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16, 980–990 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu, L. et al. The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat. Immunol. 16, 991–999 (2015).

    CAS  PubMed  Google Scholar 

  96. Basu, R., Hatton, R. D. & Weaver, C. T. The Th17 family: flexibility follows function. Immunol. Rev. 252, 89–103 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yosef, N. et al. Dynamic regulatory network controlling T(H)17 cell differentiation. Nature 496, 461–468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Henriksson, J. et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 176, 882–896.e18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    CAS  PubMed  Google Scholar 

  101. Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl. Acad. Sci. USA 112, 7061–7066 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Panzer, M. et al. Rapid in vivo conversion of effector T cells into Th2 cells during helminth infection. J. Immunol. 188, 615–623 (2012).

    CAS  PubMed  Google Scholar 

  103. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    PubMed  Google Scholar 

  105. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu, K. T. et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35, 622–632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155–167 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Hegazy, A. N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 32, 116–128 (2010).

    CAS  PubMed  Google Scholar 

  109. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, Y. K. et al. Late Developmental Plasticity in the T Helper 17 Lineage. Immunity 30, 92–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Weinstein, J. S. et al. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 17, 1197–1205 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liston, A. & Gray, D. H. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14, 154–165 (2014).

    CAS  PubMed  Google Scholar 

  113. Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E. & Waldmann, H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461–467 (2013).

    CAS  PubMed  Google Scholar 

  114. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–U557 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3(+) regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Levine, A. G. et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546, 421–425 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Feng, Y. Q. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Koch, M. A. et al. T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor beta 2. Immunity 37, 501–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu, F., Sharma, S., Edwards, J., Feigenbaum, L. & Zhu, J. F. Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nat. Immunol. 16, 197–206 (2015).

    CAS  PubMed  Google Scholar 

  120. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458, 351–U116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Noval Rivas, M. et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42, 512–523 (2015).

    CAS  PubMed  Google Scholar 

  122. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of ROR gamma(+) regulatory T cells. Science 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through ROR gamma t(+) T cells. Science 349, 989–993 (2015).

    CAS  PubMed  Google Scholar 

  124. Chaudhry, A. et al. CD4(+) regulatory T cells control T(H)17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wollenberg, I. et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187, 4553–4560 (2011).

    CAS  PubMed  Google Scholar 

  127. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    CAS  PubMed  Google Scholar 

  129. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    CAS  PubMed  Google Scholar 

  130. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Karmaus, P. W. F. et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565, 101–105 (2019).

    CAS  PubMed  Google Scholar 

  133. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lonnberg, T. et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves T(H)1/T-FH fate bifurcation in malaria. Sci. Immunol. 2, pii: eaal2192 (2017).

    Google Scholar 

  135. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174, 285.e12–299.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. DiSpirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci Immunol 3, pii: eaat5861 (2018).

    Google Scholar 

  138. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. He, R. et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    CAS  PubMed  Google Scholar 

  140. Leong, Y. A. et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    CAS  PubMed  Google Scholar 

  141. Muranski, P. et al. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972–985 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Shin, B. et al. Effector CD4 T cells with progenitor potential mediate chronic intestinal inflammation. J. Exp. Med. 215, 1803–1812 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–U1073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–U225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Hirota, K. et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323, 1488–1492 (2009).

    CAS  PubMed  Google Scholar 

  147. Wang, S. et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43, 289–303 (2015).

    PubMed  PubMed Central  Google Scholar 

  148. Kawamoto, S. et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    CAS  PubMed  Google Scholar 

  149. Chapman, N. M. et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat. Commun. 9, 2095 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Yang, K. et al. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 548, 602–606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, pii: eaat6280 (2019).

    Google Scholar 

  152. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 13, 1010–1019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wohlfert, E. A. et al. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, Y., Su, M. A. & Wan, Y. Y. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35, 337–348 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Amsen, D., van Gisbergen, K., Hombrink, P. & van Lier, R. A. W. Tissue-resident memory T cells at the center of immunity to solid tumors. Nat. Immunol. 19, 538–546 (2018).

    CAS  PubMed  Google Scholar 

  157. Naik, S. et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172, 784.e18–796.e18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307.e22–1320.e22 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119.e11–1129.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hirata, Y. et al. CD150(high) bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445.e5–453.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Campbell, C. et al. Extrathymically generated regulatory T cells establish a niche for intestinal border-dwelling bacteria and affect physiologic metabolite balance. Immunity 48, 1245.e9–1257.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    CAS  PubMed  Google Scholar 

  165. Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    CAS  PubMed  Google Scholar 

  166. Bantug, G. R., Galluzzi, L., Kroemer, G. & Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol. 18, 19–34 (2018).

    CAS  PubMed  Google Scholar 

  167. Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194–207 (2015).

    PubMed  Google Scholar 

  168. Shi, L. Z. et al. HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  170. Zeng, H. et al. mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T cell differentiation. Immunity 45, 540–554 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Ray, J. P. et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. DiToro, D. et al. Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells. Science 361, pii: eaao2933 (2018).

    Google Scholar 

  173. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780.e19–1795.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    CAS  PubMed  Google Scholar 

  175. Endo, Y. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    CAS  PubMed  Google Scholar 

  176. Weinberg, S. E. et al. Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 565, 495–499 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish T-reg-cell function. Nature 499, 485–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Kishore, M. et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity 47, 875.e10–889.e10 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Tan, H. Y. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, R. N. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  187. Vaeth, M. et al. Store-operated Ca(2+) entry controls clonal expansion of T cells through metabolic reprogramming. Immunity 47, 664.e6–679.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Ross, S. H. et al. Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase-dependent and -independent networks in CD8(+) T cells. Immunity 45, 685–700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Dang, E. V. et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Phan, A. T. et al. Constitutive glycolytic metabolism supports CD8(+) T cell effector memory differentiation during viral infection. Immunity 45, 1024–1037 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Clever, D. et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166, 1117.e14–1131.e14 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Chapman, N. M. & Chi, H. Hallmarks of T-cell exit from quiescence. Cancer Immunol. Res. 6, 502–508 (2018).

    CAS  PubMed  Google Scholar 

  198. Chisolm, D. A. et al. CCCTC-binding factor translates interleukin 2- and alpha-ketoglutarate-sensitive metabolic changes in T cells into context-dependent gene programs. Immunity 47, 251.e7–267.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Buck, M. D., Sowell, R. T., Kaech, S. M. & Pearce, E. L. Metabolic instruction of immunity. Cell 169, 570–586 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    CAS  PubMed  Google Scholar 

  204. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Swamy, M. et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17, 712–720 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Schmitt, N. & Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120.e17–1133.e17 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 176, 404 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Sallusto, F. Heterogeneity of human CD4(+) T cells against microbes. Annu. Rev. Immunol. 34, 317–334 (2016).

    CAS  PubMed  Google Scholar 

  211. Davis, M. M. & Brodin, P. Rebooting human immunology. Annu. Rev. Immunol. 36, 843–864 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to all colleagues whose key contributions could not be individually cited due to space limitations. We thank Yanyan Wang for manuscript editing. This work was supported by the National Institutes of Health and the National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Chi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravia, J., Chapman, N.M. & Chi, H. Helper T cell differentiation. Cell Mol Immunol 16, 634–643 (2019). https://doi.org/10.1038/s41423-019-0220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0220-6

Keywords

This article is cited by

Search

Quick links