Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The innate immune response to allotransplants: mechanisms and therapeutic potentials

Abstract

Surgical trauma and ischemia reperfusion injury (IRI) are unavoidable aspects of any solid organ transplant procedure. They trigger a multifactorial antigen-independent inflammatory process that profoundly affects both the early and long-term outcomes of the transplanted organ. The injury associated with donor organ procurement, storage, and engraftment triggers innate immune activation that inevitably results in cell death, which may occur in many different forms. Dying cells in donor grafts release damage-associated molecular patterns (DAMPs), which alert recipient innate cells, including macrophages and dendritic cells (DCs), through the activation of the complement cascade and toll-like receptors (TLRs). The long-term effect of inflammation on innate immune cells is associated with changes in cellular metabolism that skew the cells towards aerobic glycolysis, resulting in innate immune cell activation and inflammatory cytokine production. The different roles of proinflammatory cytokines in innate immune activation have been described, and these cytokines also stimulate optimal T-cell expansion during allograft rejection. Therefore, early innate immune events after organ transplantation determine the fate of the adaptive immune response. In this review, we summarize the contributions of innate immunity to allograft rejection and discuss recent studies and emerging concepts in the targeted delivery of therapeutics to modulate the innate immune system to enhance allograft survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tait, S. W., Ichim, G. & Green, D. R. Die another way—non-apoptotic mechanisms of cell death. J. Cell Sci. 127, 2135–2144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Juncadella, I. J. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

    CAS  PubMed  Google Scholar 

  3. Garcia, M. R. et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J. Clin. Invest 120, 2486–2496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boros, P. & Bromberg, J. S. New cellular and molecular immune pathways in ischemia/reperfusion injury. Am. J. Transplant. 6, 652–658 (2006).

    CAS  PubMed  Google Scholar 

  5. Boros, P. & Bromberg, J. S. De novo autoimmunity after organ transplantation: targets and possible pathways. Hum. Immunol. 69, 383–388 (2008).

    CAS  PubMed  Google Scholar 

  6. Sacks, S. H., Chowdhury, P. & Zhou, W. Role of the complement system in rejection. Curr. Opin. Immunol. 15, 487–492 (2003).

    CAS  PubMed  Google Scholar 

  7. Kataoka, H., Kono, H., Patel, Z., Kimura, Y. & Rock, K. L. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS One 9, e104741 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med 17, 1391–1401 (2011).

    CAS  PubMed  Google Scholar 

  9. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    CAS  PubMed  Google Scholar 

  11. Mathis, D. & Shoelson, S. E. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11, 81 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Degauque, N., Brosseau, C. & Brouard, S. Regulation of the immune response by the inflammatory metabolic microenvironment in the context of allotransplantation. Front Immunol. 9, 1465 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Tanimine, N., Turka, L. A. & Priyadharshini, B. Navigating T-cell immunometabolism in transplantation. Transplantation 102, 230–239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Muller, T. et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol. Life Sci. 74, 3631–3645 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Oberbarnscheidt, M. H. et al. Non-self recognition by monocytes initiates allograft rejection. J. Clin. Invest. 124, 3579–3589 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarhan, M., von Massenhausen, A., Hugo, C., Oberbauer, R. & Linkermann, A. Immunological consequences of kidney cell death. Cell Death Dis. 9, 114 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Bruni, A. et al. Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death Dis. 9, 595 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Zschiedrich, S. et al. An update on ABO-incompatible kidney transplantation. Transpl. Int. 28, 387–397 (2015).

    PubMed  Google Scholar 

  21. Halloran, P. F., Reeve, J. P., Pereira, A. B., Hidalgo, L. G. & Famulski, K. S. Antibody-mediated rejection, T cell-mediated rejection, and the injury-repair response: new insights from the Genome Canada studies of kidney transplant biopsies. Kidney Int. 85, 258–264 (2014).

    CAS  PubMed  Google Scholar 

  22. Land, W. G. Innate immunity-mediated allograft rejection and strategies to prevent it. Transplant. Proc. 39, 667–672 (2007).

    CAS  PubMed  Google Scholar 

  23. Cypel, M. et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 364, 1431–1440 (2011).

    CAS  PubMed  Google Scholar 

  24. Emaminia, A. et al. Adenosine A2A agonist improves lung function during ex vivo lung perfusion. Ann. Thorac. Surg. 92, 1840–1846 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. Guibert, E. E. et al. Organ preservation: current concepts and new strategies for the next decade. Transfus. Med. Hemother. 38, 125–142 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Machuca, T. N. et al. Safety and efficacy of ex vivo donor lung adenoviral IL-10 gene therapy in a large animal lung transplant survival model. Human. Gene Ther. 28, 757–765 (2017).

    CAS  Google Scholar 

  27. Mittal, S. K. & Roche, P. A. Suppression of antigen presentation by IL-10. Curr. Opin. Immunol. 34, 22–27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cypel, M. et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci. Transl. Med. 1, 4ra9–4ra9 (2009).

    PubMed  Google Scholar 

  29. Lin, H. et al. α1-Anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion. J. Heart Lung Transplant. 37, 656–666 (2018).

    PubMed  Google Scholar 

  30. Iskender, I. et al. Human α1-antitrypsin improves early post-transplant lung function: pre-clinical studies in a pig lung transplant model. J. Heart Lung Transplant. 35, 913–921 (2016).

    PubMed  Google Scholar 

  31. Sarma, J. V. & Ward, P. A. The complement system. Cell Tissue Res. 343, 227–235 (2011).

    CAS  PubMed  Google Scholar 

  32. Noris, M. & Remuzzi, G. Overview of complement activation and regulation. Semin. Nephrol. 33, 479–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marrón-Liñares, G. M. et al. Polymorphisms in genes related to the complement system and antibody-mediated cardiac allograft rejection. J. Heart Lung Transplant. 37, 477–485 (2018).

    PubMed  Google Scholar 

  34. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I—molecular mechanisms of activation and regulation. Front. Immunol. 6 (2015).

  35. Varela, J. C. & Tomlinson, S. Complement: an overview for the clinician. Hematology 29, 409–427 (2015).

    Google Scholar 

  36. Atkinson, J. P. et al. (eds). Clinical Immunology (Fifth Edition). 299–317 (London, 2019).

  37. Thurman, J. M. & Holers, V. M. The central role of the alternative complement pathway in human disease. J. Immunol. 176, 1305–1310 (2006).

    CAS  PubMed  Google Scholar 

  38. Merle, N. S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part II: role in immunity. Front. Immunol. 6 (2015).

  39. Beltrame, M. H., Catarino, S. J., Goeldner, I., Boldt, A. B. W. & de Messias-Reason, I. J. The lectin pathway of complement and rheumatic heart disease. Front. Pediatr. 2 (2015).

  40. Angioi, A. et al. Diagnosis of complement alternative pathway disorders. Kidney Int. 89, 278–288 (2016).

    CAS  PubMed  Google Scholar 

  41. Mathern, D. R. & Heeger, P. S. Molecules great and small: the complement system. Clin. J. Am. Soc. Nephrol. 10, 1636–1650 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cernoch, M. & Viklicky, O. Complement in kidney tTransplantation. Front. Med. 4, 66–66 (2017).

    Google Scholar 

  43. Kahr, W. H. A. Complement halts angiogenesis gone wild. Blood 116, 4393–4394 (2010).

    CAS  PubMed  Google Scholar 

  44. Makrides, S. C. Therapeutic inhibition of the complement system. Pharmacol. Rev. 50, 59–88 (1998).

    CAS  PubMed  Google Scholar 

  45. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stegall, M. D., Chedid, M. F. & Cornell, L. D. The role of complement in antibody-mediated rejection in kidney transplantation. Nat. Rev. Nephrol. 8, 670 (2012).

    CAS  PubMed  Google Scholar 

  47. Chun, N. et al. Complement dependence of murine costimulatory blockade-resistant cellular cardiac allograft rejection. Am. J. Transplant. 17, 2810–2819 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Arumugam, T. V., Shiels, I. A., Woodruff, T. M., Granger, D. N. & Taylor, S. M. The role of the complement system in ischemia-reperfusion injury. Shock 21, 401–409 (2004).

    CAS  PubMed  Google Scholar 

  49. Danobeitia, J. S., Djamali, A. & Fernandez, L. A. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrogenesis Tissue Repair 7, 16 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. Sheerin, N. S. Should complement activation be a target for therapy in renal transplantation? J. Am. Soc. Nephrol. 19, 2250–2251 (2008).

    PubMed  Google Scholar 

  51. Schmid, R. A. et al. Effect of soluble complement receptor type 1 on reperfusion edema and neutrophil migration after lung allotransplantation in swine. J. Thorac. Cardiovasc Surg. 116, 90–97 (1998).

    CAS  PubMed  Google Scholar 

  52. Keshavjee, S., Davis, R. D., Zamora, M. R., de Perrot, M. & Patterson, G. A. A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J. Thorac. Cardiovasc Surg. 129, 423–428 (2005).

    CAS  PubMed  Google Scholar 

  53. Gueler, F. et al. Complement 5a receptor inhibition improves renal allograft survival. J. Am. Soc. Nephrol. 19, 2302–2312 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. Jordan, S. C. et al. A phase I/II, double-blind, placebo-controlled study assessing safety and efficacy of C1 esterase inhibitor for prevention of delayed graft function in deceased donor kidney transplant recipients. Am. J. Transplant. 18, 2955–2964 (2018).

    CAS  PubMed  Google Scholar 

  55. Zheng, X. et al. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury. Am. J. Pathol. 173, 973–980 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ricklin, D. & Lambris, J. D. Complement-targeted therapeutics. Nat. Biotechnol. 25, 1265–1275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Weitz, M., Amon, O., Bassler, D., Koenigsrainer, A. & Nadalin, S. Prophylactic eculizumab prior to kidney transplantation for atypical hemolytic uremic syndrome. Pediatr. Nephrol. 26, 1325 (2011).

    PubMed  Google Scholar 

  58. Barnett, A. N. R. et al. The use of eculizumab in renal transplantation. Clin. Transplant. 27, E216–E229 (2013).

    CAS  PubMed  Google Scholar 

  59. Braza, F., Brouard, S., Chadban, S. & Goldstein, D. R. Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nat. Rev. Nephrol. 12, 281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Deng, J. F. et al. The role of toll-like receptors 2 and 4 in acute allograft rejection after liver transplantation. Transplant. Proc. 39, 3222–3224 (2007).

    CAS  PubMed  Google Scholar 

  61. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461–461 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. Alegre, M.-L. & Chong, A. Toll-like receptors (TLRs) in transplantation. Front. Biosci. (Elite Ed.) 1, 36–43 (2009).

    Google Scholar 

  63. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135 (2001).

    CAS  PubMed  Google Scholar 

  64. Leventhal, J. S. & Schröppel, B. Toll-like receptors in transplantation: sensing and reacting to injury. Kidney Int. 81, 826–832 (2012).

    CAS  PubMed  Google Scholar 

  65. Sheen, J.-H. et al. TLR-induced murine dendritic cell (DC) activation requires DC-intrinsic complement. J. Immunol. 199, 278–291 (2017).

    CAS  PubMed  Google Scholar 

  66. Alegre, M.-L., Goldstein, D. R. & Chong, A. S. Toll-like receptor signaling in transplantation. Curr. Opin. Organ Transplant. 13, 358–365 (2008).

    PubMed  PubMed Central  Google Scholar 

  67. Patel, H. et al. Toll-like receptors in ischaemia and its potential role in the pathophysiology of muscle damage in critical limb ischaemia. Cardiol. Res. Pract. 2012, 121237–121237 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

    CAS  PubMed  Google Scholar 

  69. Deguine, J. & Barton, G. M. MyD88: a central player in innate immune signaling. F1000prime Rep. 6, 97–97 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Goldstein, D. R., Tesar, B. M., Akira, S. & Lakkis, F. G. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J. Clin. Investig. 111, 1571–1578 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, S. et al. Recipient toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling. Dis. Models 3, 92–103 (2010).

    CAS  Google Scholar 

  72. Zhao, H., Perez, J. S., Lu, K., George, A. J. T. & Ma, D. Role of toll-like receptor-4 in renal graft ischemia-reperfusion injury. Am. J. Physiol. 306, F801–F811 (2014).

    CAS  Google Scholar 

  73. Arslan, F., Keogh, B., McGuirk, P. & Parker, A. E. TLR2 and TLR4 in ischemia reperfusion injury. Mediat. Inflamm. 2010, 704202–704202 (2010).

    CAS  Google Scholar 

  74. Leemans, J. C. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Investig. 115, 2894–2903 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pulskens, W. P. et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One 3, e3596–e3596 (2008).

    PubMed  PubMed Central  Google Scholar 

  76. Kaczorowski, D. J. et al. Toll-like receptor 4 mediates the early inflammatory response after cold ischemia/reperfusion. Transplantation 84, 1279–1287 (2007).

    CAS  PubMed  Google Scholar 

  77. Palmer, S. M. et al. Donor polymorphisms in Toll-like receptor-4 influence the development of rejection after renal transplantation. Clin. Transplant. 20, 30–36 (2006).

    PubMed  Google Scholar 

  78. Testro, A. G. et al. Acute allograft rejection in human liver transplant recipients is associated with signaling through toll-like receptor 4. J. Gastroenterol. Hepatol. 26, 155–163 (2011).

    CAS  PubMed  Google Scholar 

  79. Kwon, J., Park, J., Lee, D., Kim, Y. S. & Jeong, H. J. Toll-like receptor expression in patients with renal allograft dysfunction. Transplant. Proc. 40, 3479–3480 (2008).

    CAS  PubMed  Google Scholar 

  80. Braudeau, C. et al. Contrasted blood and intragraft toll-like receptor 4 mRNA profiles in operational tolerance versus chronic rejection in kidney transplant recipients. Transplantation 86, 130–136 (2008).

    CAS  PubMed  Google Scholar 

  81. Wu, L. A Flt3L encounter: mTOR signaling in dendritic cells. Immunity 33, 580–582 (2010).

    CAS  PubMed  Google Scholar 

  82. Li, J. et al. Neutralization of the extracellular HMGB1 released by ischaemic damaged renal cells protects against renal ischaemia-reperfusion injury. Nephrol. Dial. Transplant. 26, 469–478 (2011).

    PubMed  Google Scholar 

  83. Zou, H. et al. HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs. Am. J. Transplant. 14, 1765–1777 (2014).

    CAS  PubMed  Google Scholar 

  84. Irani, Y. et al. Noble gas (Argon and Xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra 1, 272–282 (2011).

    CAS  PubMed  Google Scholar 

  85. Zhao, H. et al. Xenon treatment protects against remote lung injury after kidney transplantation in rats. Anesthesiology 122, 1312–1326 (2015).

    CAS  PubMed  Google Scholar 

  86. Zhao, H. et al. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats. Am. J. Transplant. 13, 2006–2018 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Barochia, A., Solomon, S., Cui, X., Natanson, C. & Eichacker, P. Q. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin. Drug Metab. Toxicol. 7, 479–494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Opal, S. M. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309, 1154–1162 (2013).

    CAS  PubMed  Google Scholar 

  89. Liu, M. et al. Protective effects of Toll-like receptor 4 inhibitor eritoran on renal ischemia-reperfusion injury. Transplant. Proc. 42, 1539–1544 (2010).

    CAS  PubMed  Google Scholar 

  90. McDonald, K. A. et al. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol. Med. 20, 639–648 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Gu, J. et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice. Crit. Care 15, R153 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. Conde, P. et al. DC-SIGN(+) macrophages control the induction of transplantation tolerance. Immunity 42, 1143–1158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Baardman, J. et al. A defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia. Cell Rep. 25, 2044–2052 e2045 (2018).

    CAS  PubMed  Google Scholar 

  95. Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Wang, F. et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine 30, 303–316 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Vats, D. et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    CAS  PubMed  Google Scholar 

  100. Rath, M., Muller, I., Kropf, P., Closs, E. I. & Munder, M. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol. 5, 532 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Yu, X. H., Zhang, D. W., Zheng, X. L. & Tang, C. K. Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol. Cell Biol. 97, 134–141 (2018).

  102. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Byles, V. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 4, 2834 (2013).

    PubMed  Google Scholar 

  104. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Robey, R. B. & Hay, N. Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 19, 25–31 (2009).

    CAS  PubMed  Google Scholar 

  106. Hanna, R. N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat. Immunol. 12, 778–785 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Koenis, D. S. et al. Nuclear receptor Nur77 limits the macrophage inflammatory response through transcriptional reprogramming of mitochondrial metabolism. Cell Rep. 24, 2127–2140 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Cramer, T. et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sohrabi, Y., Godfrey, R. & Findeisen, H. M. Altered cellular metabolism drives trained immunity. Trends Endocrinol. Metab. 29, 602–605 (2018).

    CAS  PubMed  Google Scholar 

  110. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng, S. C. et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Braza, M. S. et al. Inhibiting inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity 49, 819–828 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146 (2018).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jordan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochando, J., Ordikhani, F., Boros, P. et al. The innate immune response to allotransplants: mechanisms and therapeutic potentials. Cell Mol Immunol 16, 350–356 (2019). https://doi.org/10.1038/s41423-019-0216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0216-2

This article is cited by

Search

Quick links