Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liver-resident NK cells suppress autoimmune cholangitis and limit the proliferation of CD4+ T cells

Abstract

Liver-resident NK cells are distinct from conventional NK cells and play an important role in the maintenance of liver homeostasis. How liver-resident NK cells participate in autoimmune cholangitis remains unclear. Here, we extensively investigated the impact of NK cells in the pathogenesis of autoimmune cholangitis utilizing the well-established dnTGFβRII cholangitis model, NK cell-deficient (Nfil3−/−) mice, adoptive transfer and in vivo antibody-mediated NK cell depletion. Our data demonstrated that disease progression was associated with a significantly reduced frequency of hepatic NK cells. Depletion of NK cells resulted in exacerbated autoimmune cholangitis in dnTGFβRII mice. We further confirmed that the DX5CD11chi liver-resident NK cell subset colocalized with CD4+ T cells and inhibited CD4+ T cell proliferation. Gene expression microarray analysis demonstrated that liver-resident NK cells had a distinct gene expression pattern consisting of the increased expression of genes involved in negative regulatory functions in the context of the inflammatory microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirschfield, G. M. & Gershwin, M. E. The immunobiology and pathophysiology of primary biliary cirrhosis. Annu. Rev. Pathol. 8, 303–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Gershwin, M. E. & Mackay, I. R. The causes of primary biliary cirrhosis: convenient and inconvenient truths. Hepatology 47, 737–745 (2008).

    Article  PubMed  Google Scholar 

  3. Selmi, C. et al. Experimental evidence on the immunopathogenesis of primary biliary cirrhosis. Cell. Mol. Immunol. 7, 1–10 (2010).

    Article  PubMed  Google Scholar 

  4. Tomiyama, T. et al. The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell. Mol. Immunol. 14, 276–284 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Chuang, Y. H. et al. Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J. Autoimmun. 26, 232–240 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Gorelik, L. & Flavell, R. A. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Oertelt, S. et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta receptor II dominant-negative mice. J. Immunol. 177, 1655–1660 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ma, H. D. et al. Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8(+) T cell activation. J. Autoimmun. 78, 19–28 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, G. X. et al. Adoptive transfer of CD8(+) T cells from transforming growth factor beta receptor type II (dominant negative form) induces autoimmune cholangitis in mice. Hepatology 47, 1974–1982 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kawata, K. et al. Clonality, activated antigen-specific CD8( + ) T cells, and development of autoimmune cholangitis in dnTGFbetaRII mice. Hepatology 58, 1094–1104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang W., et al. Proteomic analysis reveals distinctive protein profiles involved in CD8(+) T cell-mediated murine autoimmune cholangitis. Cell. Mol. Immunol. 15, 756–767 (2018).

    Article  CAS  Google Scholar 

  12. Moritoki, Y. et al. B-cell depletion with anti-CD20 ameliorates autoimmune cholangitis but exacerbates colitis in transforming growth factor-beta receptor II dominant negative mice. Hepatology 50, 1893–1903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chuang, Y. H. et al. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 47, 571–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. H. et al. Systems biologic analysis of T regulatory cells genetic pathways in murine primary biliary cirrhosis. J. Autoimmun. 59, 26–37 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kashiwada, M., Pham, N. L., Pewe, L. L., Harty, J. T. & Rothman, P. B. NFIL3/E4BP4 is a key transcription factor for CD8alpha(+) dendritic cell development. Blood 117, 6193–6197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tian, Z., Chen, Y. & Gao, B. Natural killer cells in liver disease. Hepatology 57, 1654–1662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao, B. Basic liver immunology. Cell. Mol. Immunol. 13, 265–266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pelletier, S. et al. Increased degranulation of natural killer cells during acute HCV correlates with the magnitude of virus-specific T cell responses. J. Hepatol. 53, 805–816 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Golden-Mason, L., Cox, A. L., Randall, J. A., Cheng, L. & Rosen, H. R. Increased natural killer cell cytotoxicity and NKp30 expression protects against hepatitis C virus infection in high-risk individuals and inhibits replication in vitro. Hepatology 52, 1581–1589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wen, C. et al. Hepatitis C virus infection downregulates the ligands of the activating receptor NKG2D. Cell. Mol. Immunol. 5, 475–478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med. 204, 667–680 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y., et al. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. Cell. Mol. Immunol. 14, 465–475 (2017)

    Article  CAS  Google Scholar 

  23. Peng, H., Wisse, E. & Tian, Z. Liver natural killer cells: subsets and roles in liver immunity. Cell. Mol. Immunol. 13, 328–336 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Laso, F. J. et al. Chronic alcohol consumption is associated with an increased cytotoxic profile of circulating lymphocytes that may be related with the development of liver injury. Alcohol. Clin. Exp. Res. 34, 876–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Radaeva, S. et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Male, V. et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635–642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimoda, S. et al. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 53, 1270–1281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gao, B. & Bertola, A. Natural killer cells take two tolls to destruct bile ducts. Hepatology 53, 1076–1079 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tian, Z., Gershwin, M. E. & Zhang, C. Regulatory NK cells in autoimmune disease. J. Autoimmun. 39, 206–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Li, L. et al. Natural killer cells-produced IFN-gamma improves bone marrow-derived hepatocytes regeneration in murine liver failure model. Sci. Rep. 5, 13687 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, D. et al. Characterization and application of monoclonal antibodies against Mycoplasma hyorhinis pyruvate dehydrogenase E1 complex subunit alpha. Appl. Microbiol. Biotechnol. 100, 3587–3597 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, W. et al. Differential modulation by IL17A of Cholangitis versus Colitis in IL-2Ralpha deleted mice. PLoS ONE 9, e105351 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yao, Y. et al. Distinct from its canonical effects, deletion of IL-12p40 induces cholangitis and fibrosis in interleukin-2Ralpha(−/−) mice. J. Autoimmun. 51, 99–108 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Talwalkar, J. A., Souto, E., Jorgensen, R. A. & Lindor, K. D. Natural history of pruritus in primary biliary cirrhosis. Clin. Gastroenterol. Hepatol. 1, 297–302 (2003).

    Article  PubMed  Google Scholar 

  40. Gershwin, M. E., Mackay, I. R., Sturgess, A. & Coppel, R. L. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J. Immunol. 138, 3525–3531 (1987).

    CAS  PubMed  Google Scholar 

  41. Zhang, L. H., Shin, J. H., Haggadone, M. D. & Sunwoo, J. B. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J. Exp. Med. 213, 2249–2257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melhem, A. et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J. Hepatol. 45, 60–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, C. W. et al. NK cells suppress experimental cholestatic liver injury by an interleukin-6-mediated, Kupffer cell-dependent mechanism. J. Hepatol. 54, 746–752 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J. et al. Poly I:C prevents T cell-mediated hepatitis via an NK-dependent mechanism. J. Hepatol. 44, 446–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Shi, F. D., Ljunggren, H. G., La Cava, A. & Van Kaer, L. Organ-specific features of natural killer cells. Nat. Rev. Immunol. 11, 658–671 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, Y. & Tian, Z. NK cell education via nonclassical MHC and non-MHC ligands. Cell. Mol. Immunol. 14, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Bern M. D., et al. Inducible down-regulation of MHC class I results in natural killer cell tolerance. J. Exp. Med. 216, 99–116 (2019).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07S054), the National Natural Science Foundation of China (81601416, 81430034, 91542123), the National Key R&D Program of China (2017YFA0205600) and a National Institutes of Health grant (DK090019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Cao, M. Eric Gershwin or Zhe-Xiong Lian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZB., Lu, FT., Ma, HD. et al. Liver-resident NK cells suppress autoimmune cholangitis and limit the proliferation of CD4+ T cells. Cell Mol Immunol 17, 178–189 (2020). https://doi.org/10.1038/s41423-019-0199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0199-z

Key words

This article is cited by

Search

Quick links