Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An altered CD8+ T cell epitope of insulin prevents type 1 diabetes in humanized NOD mice

Abstract

Autoreactive CD8+ T cells, which play an indispensable role in β cell destruction, represent an emerging target for the prevention of type 1 diabetes (T1D). Altered peptide ligands (APLs) can efficiently induce antigen-specific T cells anergy, apoptosis or shifts in the immune response. Here, we found that HLA-A*0201-restricted CD8+ T cell responses against a primary β-cell autoantigen insulin epitope InsB15–14 were present in both NOD.β2mnull.HHD NOD mice and T1D patients. We generated several APL candidates for InsB15–14 by residue substitution at the p6 position. Only H6F exhibited an inhibitory effect on mInsB15–14-specific CD8+ T cell responses in vitro. H6F treatment significantly reduced the T1D incidence, which was accompanied by diminished autoreactive CD8+ T cell responses to mInsB15-14, inhibited infiltration of CD8+ and CD4+ T cells in the pancreas and reduced pro-inflammatory cytokine production in pancreatic and splenic T cells in NOD.β2mnull.HHD mice. Mechanistically, H6F treatment significantly augmented a tiny portion of CD8+CD25+Foxp3+ T cells in the spleen and especially in the pancreas. This subset exhibited typical Treg phenotypes and required peptide-specific restimulation to exert immunosuppressive activity. Therefore, this APL H6F may be a promising candidate with potential clinical application value for antigen-specific prevention of T1D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zheng, Y., Wang, Z. & Zhou, Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol. Immunol. 14, 488–496 (2017).

    Article  CAS  Google Scholar 

  2. Serreze, D. V., Leiter, E. H., Christianson, G. J., Greiner, D. & Roopenian, D. C. Major histocompatibility complex class I-deficient NOD-β2m null mice are diabetes and insulitis resistant. Diabetes 43, 505–509 (1994).

    Article  CAS  Google Scholar 

  3. Christianson, S. W., Shultz, L. D. & Leiter, E. H. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42, 44–55 (1993).

    Article  CAS  Google Scholar 

  4. Standifer, N. E. et al. Identification of Novel HLA-A*0201-restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes 55, 3061–3067 (2006).

    Article  CAS  Google Scholar 

  5. Pinkse, G. G. et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc. Natl Acad. Sci. USA 102, 18425–18430 (2005).

    Article  CAS  Google Scholar 

  6. Takaki, T. et al. HLA-A*0201-restricted T cells from humanized NOD mice recognize autoantigens of potential clinical relevance to type 1 diabetes. J. Immunol. 176, 3257–3265 (2006).

    Article  CAS  Google Scholar 

  7. Jarchum, I. et al. In vivo cytotoxicity of insulin-specific CD8+ T-cells in HLA-A*0201 transgenic NOD mice. Diabetes 56, 2551–2560 (2007).

    Article  CAS  Google Scholar 

  8. von Herrath, M. Immunology: insulin trigger for diabetes. Nature 435, 151–152 (2005).

    Article  Google Scholar 

  9. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immuntiy 12, 251–261 (2000).

    Article  CAS  Google Scholar 

  10. Han, B. et al. Prevention of diabetes by manipulation of anti-IGRP autoimmunity: high efficiency of a low-affinity peptide. Nat. Med 11, 645–652 (2005).

    Article  CAS  Google Scholar 

  11. Hartemann-Heurtier, A. et al. An altered self-peptide with superagonist activity blocks a CD8-mediated mouse model of type 1 diabetes. J. Immunol. 172, 915–922 (2004).

    Article  CAS  Google Scholar 

  12. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory Tcells. Immuntiy 32, 568–580 (2010).

    Article  CAS  Google Scholar 

  13. Mallone, R. et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 56, 613–621 (2007).

    Article  CAS  Google Scholar 

  14. Jarchum, I., Nichol, L., Trucco, M., Santamaria, P. & DiLorenzo, T. P. Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin. Immunol. 127, 359–365 (2008).

    Article  CAS  Google Scholar 

  15. Li, Y. et al. Identification of autoreactive CD8+T cell responses targeting chromogranin A in humanized NOD mice and type 1 diabetes patients. Clin. Immunol. 159, 63–71 (2015).

    Article  CAS  Google Scholar 

  16. Niens, M. et al. Prevention of “Humanized” diabetogenic CD8 T-cell responses in HLA-transgenic NOD mice by a multipeptide coupled-cell approach. Diabetes 60, 1229–1236 (2011).

    Article  CAS  Google Scholar 

  17. Alleva, D. G. et al. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9-23) peptide. Diabetes 51, 2126–2134 (2002).

    Article  CAS  Google Scholar 

  18. Martinez, N. R. et al. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J. Clin. Investig. 111, 1365–1371 (2003).

    Article  CAS  Google Scholar 

  19. Ablamunits, V., Elias, D., Reshef, T. & Cohen, I. R. Islet T cells secreting IFN-gamma in NOD mouse diabetes: arrest by p277 peptide treatment. J. Autoimmun. 11, 73–81 (1998).

    Article  CAS  Google Scholar 

  20. Hillig, R. C. et al. High-resolution structure of HLA-A*0201 in complex with a tumour-specific antigenic peptide encoded by the MAGE-A4 gene. J. Mol. Biol. 310, 1167–1176 (2001).

    Article  CAS  Google Scholar 

  21. Mou, Z. et al. Identification of broadly conserved cross-species protective Leishmania antigen and its responding CD4+ T cells. Sci. Traasl Med. 7, 167r–310r (2015).

    Google Scholar 

  22. Kollman, P. A. et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res 33, 889–897 (2000).

    Article  CAS  Google Scholar 

  23. Zhang, M. et al. Caffeic acid reduces cutaneous tumor necrosis factor alpha (TNF-alpha), IL-6 and IL-1beta levels and ameliorates skin edema in acute and chronic model of cutaneous inflammation in mice. Biol. Pharm. Bull. 37, 347–354 (2014).

    Article  CAS  Google Scholar 

  24. Trembleau, S. et al. Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J. Immunol. 163, 2960–2968 (1999).

    CAS  PubMed  Google Scholar 

  25. Bercovici, N. et al. Systemic administration of agonist peptide blocks the progression of spontaneous CD8-mediated autoimmune diabetes in transgenic mice without bystander damage. J. Immunol. 165, 202–210 (2000).

    Article  CAS  Google Scholar 

  26. Daniel, C., Weigmann, B., Bronson, R. & von Boehmer, H. Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. J. Exp. Med. 208, 1501–1510 (2011).

    Article  CAS  Google Scholar 

  27. Fousteri, G. et al. Subcutaneous insulin B:9-23/IFA immunisation induces Tregs that control late-stage prediabetes in NOD mice through IL-10 and IFNgamma. Diabetologia 53, 1958–1970 (2010).

    Article  CAS  Google Scholar 

  28. Hjorth, M. et al. GAD-alum treatment induces GAD65-specific CD4+CD25highFOXP3+ cells in type 1 diabetic patients. Clin. Immunol. 138, 117–126 (2011).

    Article  CAS  Google Scholar 

  29. Petrich, D. M. L. et al. Functional inhibition related to structure of a highly potent insulin-specific CD8 T cell clone using altered peptide ligands. Eur. J. Immunol. 38, 240–249 (2008).

    Article  Google Scholar 

  30. Thomson, C. T., Kalergis, A. M., Sacchettini, J. C. & Nathenson, S. G. A structural difference limited to one residue of the antigenic peptide can profoundly alter the biological outcome of the TCR-peptide/MHC class I interaction. J. Immunol. 166, 3994–3997 (2001).

    Article  CAS  Google Scholar 

  31. Bisikirska, B., Colgan, J., Luban, J., Bluestone, J. A. & Herold, K. C. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest 115, 2904–2913 (2005).

    Article  CAS  Google Scholar 

  32. Zhang P., Lu Q. Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell. Mol. Immunol. 2018; in press. https://doi.org/10.1038/cmi.2017.137.

  33. Wang, R. et al. CD8+ regulatory T cells are responsible for GAD-IgG gene-transferred tolerance induction in NOD mice. Immunology 126, 123–131 (2009).

    Article  CAS  Google Scholar 

  34. Wang, Y., Xie, Q., Liang, C. L., Zeng, Q. & Dai, Z. Chinese medicine Ginseng and Astragalus granules ameliorate autoimmune diabetes by upregulating both CD4+FoxP3+ and CD8+CD122+PD1+ regulatory T cells. Oncotarget 8, 60201–60209 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Lange, C., Scholl, M., Melms, A. & Bischof, F. CD62L(high) Treg cells with superior immunosuppressive properties accumulate within the CNS during remissions of EAE. Brain Behav. Immun. 25, 120–126 (2011).

    Article  CAS  Google Scholar 

  36. Correale, J. & Villa, A. Role of CD8+CD25+Foxp3+ regulatory T cells in multiple sclerosis. Ann. Neurol. 67, 625–638 (2010).

    CAS  PubMed  Google Scholar 

  37. Fleissner, D., Hansen, W., Geffers, R., Buer, J. & Westendorf, A. M. Local induction of immunosuppressive CD8+T cells in the gut-associated lymphoid tissues. PLos ONE 5, e15373 (2010).

    Article  Google Scholar 

  38. Bienvenu, B. et al. Peripheral CD8+CD25+ T lymphocytes from MHC class II-deficient mice exhibit regulatory activity. J. Immunol. 175, 246–253 (2005).

    Article  CAS  Google Scholar 

  39. Churlaud, G. et al. Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during interleukin-2 therapy. Front. Immunol. 6, 171 (2015).

    Article  Google Scholar 

  40. Turner, M. S., Kane, L. P. & Morel, P. A. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).

    Article  CAS  Google Scholar 

  41. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  Google Scholar 

  42. Enée, E. et al. Equivalent specificity of peripheral blood and islet-infiltrating CD8+ T lymphocytes in spontaneously diabetic HLA-A2 transgenic NOD mice. J. Immunol. 180, 5430–5438 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31570931 and No. 31771002) and the National Key Project for Research & Development of China (Grant no. 2016YFA0502204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, S., Guo, B. et al. An altered CD8+ T cell epitope of insulin prevents type 1 diabetes in humanized NOD mice. Cell Mol Immunol 16, 590–601 (2019). https://doi.org/10.1038/s41423-018-0058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-018-0058-3

Keywords

Search

Quick links