Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome–lysosome fusion

Abstract

Autophagosome–lysosome fusion mediated by SNARE complexes is an essential step in autophagy. Two SNAP29-containing SNARE complexes have been extensively studied in starvation-induced bulk autophagy, while the relevant SNARE complexes in other types of autophagy occurring under non-starvation conditions have been overlooked. Here, we found that autophagosome–lysosome fusion in selective autophagy under non-starvation conditions does not require SNAP29-containing SNARE complexes, but requires the STX17-SNAP47-VAMP7/VAMP8 SNARE complex. Further, the STX17-SNAP47-VAMP7/VAMP8 SNARE complex also functions in starvation-induced autophagy. SNAP47 is recruited to autophagosomes following concurrent detection of ATG8s and PI(4,5)P2 via its Pleckstrin homology domain. By contrast, SNAP29-containing SNAREs are excluded from selective autophagy due to inactivation by O-GlcNAcylation under non-starvation conditions. These findings depict a previously unknown, default SNARE complex responsible for autophagosome–lysosome fusion in both selective and bulk autophagy, which could guide research and therapeutic development in autophagy-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SNAP47 primarily localizes to mitophagosomes.
Fig. 2: SNAP47 is required for mitophagosome–lysosomesome fusion.
Fig. 3: SNAP47 functions in starvation-induced autophagy.
Fig. 4: SNAP47 forms a ternary SNARE complex with STX17 and VAMP7/VAMP8.
Fig. 5: The binding between PH domain of SNAP47 and PI(4,5)P2 is required for SNAP47 recruitment to autophagic vacuoles.
Fig. 6: ATG8 family proteins are required for SNAP47 recruitment to autophagic vacuoles.
Fig. 7: SNAP29 O-GlcNAcylation inhibits its recruitment to mitophagosomes.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Morishita, H. & Mizushima, N. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 35, 453–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, Y. J. & Klionsky, D. J. Yeast mitophagy: Unanswered questions. Biochim. Biophys. Acta Gen. Subj. 1865, 129932 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moehlman, A. T. & Youle, R. J. Mitochondrial quality control and restraining innate immunity. Annu. Rev. Cell Dev. Biol. 36, 265–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Sarraf, S. A. & Youle, R. J. Parkin mediates mitophagy during beige-to-white fat conversion. Sci. Signal. 11, eaat1082 (2018).

    Article  PubMed  Google Scholar 

  5. Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jahn, R. & Scheller, R. H. SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Takats, S. et al. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J. Cell Biol. 201, 531–539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563–566 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Matsui, T. et al. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J. Cell Biol. 217, 2633–2645 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takáts, S. et al. Non-canonical role of the SNARE protein Ykt6 in autophagosome–lysosome fusion. PLoS Genet. 14, e1007359 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bas, L. et al. Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. J. Cell Biol. 217, 3656–3669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao, J., Reggiori, F. & Ungermann, C. A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J. Cell Biol. 217, 3670–3682 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18, 1042–1052 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Szeto, J. et al. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2, 189–199 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Fan, W. et al. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6, 614–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell 185, 1325–1345.e22 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen, T. N. et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J. Cell Biol. 215, 857–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, B. et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat. Cell Biol. 16, 1215–1226 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, L., Chen, Y. & Tooze, S. A. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14, 207–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura, S., Hasegawa, J. & Yoshimori, T. Regulation of lysosomal phosphoinositide balance by INPP5E is essential for autophagosome–lysosome fusion. Autophagy 12, 2500–2501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, D. et al. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol. Cell 45, 629–641 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, H. et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc. Natl. Acad. Sci. USA 112, 7015–7020 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Sun, H. Q. et al. PI4P-dependent targeting of ATG14 to mature autophagosomes. Biochemistry 61, 722–729 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, Y. et al. PI3P phosphatase activity is required for autophagosome maturation and autolysosome formation. EMBO Rep. 15, 973–981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moreau, K., Ravikumar, B., Puri, C. & Rubinsztein, D. C. Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4,5-bisphosphate and phospholipase D. J. Cell Biol. 196, 483–496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan, X., Thapa, N., Liao, Y., Choi, S. & Anderson, R. A. PtdIns(4,5)P2 signaling regulates ATG14 and autophagy. Proc. Natl. Acad. Sci. USA 113, 10896–10901 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Fan, W., Nassiri, A. & Zhong, Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. USA 108, 7769–7774 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Zhang, H. et al. PtdIns4P restriction by hydrolase SAC1 decides specific fusion of autophagosomes with lysosomes. Autophagy 17, 1907–1917 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Baba, T., Toth, D. J., Sengupta, N., Kim, Y. J. & Balla, T. Phosphatidylinositol 4,5-bisphosphate controls Rab7 and PLEKHM1 membrane cycling during autophagosome–lysosome fusion. EMBO J. 38, e100312 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Leo, M. G. et al. Autophagosome–lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat. Cell Biol. 18, 839–850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao, Y. G., Codogno, P. & Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. 22, 733–750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakamura, S. & Yoshimori, T. New insights into autophagosome–lysosome fusion. J. Cell Sci. 130, 1209–1216 (2017).

    CAS  PubMed  Google Scholar 

  36. Kumar, S. et al. Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat. Cell Biol. 22, 973–985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu, Y. et al. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs. EMBO J. 38, e101994 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar, S. et al. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J. Cell Biol. 217, 997–1013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sagiv, Y., Legesse-Miller, A., Porat, A. & Elazar, Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J. 19, 1494–1504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. ULK phosphorylation of STX17 controls autophagosome maturation via FLNA. J. Cell Biol. 222, e202211025 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, Y. G. & Zhang, H. Autophagosome maturation: An epic journey from the ER to lysosomes. J. Cell Biol. 218, 757–770 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Z. et al. The Vici Syndrome Protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Mol. Cell 63, 781–795 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. McEwan, D. G. et al. PLEKHM1 regulates autophagosome–lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol. Cell 57, 39–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y., Que, H. & Rong, Y. Autophagosomal components recycling on autolysosomes. Trends Cell Biol. 32, 897–899 (2022).

    Article  PubMed  Google Scholar 

  45. Koyama-Honda, I., Tsuboyama, K. & Mizushima, N. ATG conjugation-dependent degradation of the inner autophagosomal membrane is a key step for autophagosome maturation. Autophagy 13, 1252–1253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tan, H. W. S. et al. A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nat. Commun. 13, 3720 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Jiao, H. et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell 184, 2896–2910.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Bao, F. et al. Mitolysosome exocytosis, a mitophagy-independent mitochondrial quality control in flunarizine-induced parkinsonism-like symptoms. Sci. Adv. 8, eabk2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang, W. et al. Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nat. Commun. 14, 5031 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Kuster, A. et al. The Q-soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Q-SNARE) SNAP-47 regulates trafficking of selected Vesicle-associated Membrane Proteins (VAMPs). J. Biol. Chem. 290, 28056–28069 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Matsui, T., Sakamaki, Y., Hiragi, S. & Fukuda, M. VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct. Funct. 48, 187–198 (2023).

    Article  PubMed  Google Scholar 

  52. Dietrich, L. E., Boeddinghaus, C., LaGrassa, T. J. & Ungermann, C. Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. Biochim. Biophys. Acta 1641, 111–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D. & Galli, T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell Biol. 149, 889–900 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tochio, H., Tsui, M. M., Banfield, D. K. & Zhang, M. An autoinhibitory mechanism for nonsyntaxin SNARE proteins revealed by the structure of Ykt6p. Science 293, 698–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Vivona, S. et al. The longin SNARE VAMP7/TI-VAMP adopts a closed conformation. J. Biol. Chem. 285, 17965–17973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Uematsu, M., Nishimura, T., Sakamaki, Y., Yamamoto, H. & Mizushima, N. Accumulation of undegraded autophagosomes by expression of dominant-negative STX17 (syntaxin 17) mutants. Autophagy 13, 1452–1464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to Dr. Li Yu (Tsinghua University) and Yuhai Jia (Nanjing Normal University) for helpful suggestions on this study. We thank Dr. Michael Lazarou (Monash University) for sharing ATG8 KO cell lines. We thank Dr. Liang Ge (Tsinghua University) for sharing the HTT(Q103) plasmid. The work was supported by grants from NSFC (92254302, 91854116, 32170685 and 31771529 to Y.R.). The work was partially supported by the Fundamental Research Funds for the Central Universities (5003510089 and 2023BR028 to Y.R.).

Author information

Authors and Affiliations

Authors

Contributions

F.J. and Y.R. conceived and designed the biological and biochemical experiments. F.J., R.T., Y.W., and C.L. carried out the biological and biochemical experiments. S.W. C.M. and Y.R. designed and S.W. carried out the in vitro liposome fusion and single vesicle binding experiments. F.J., S.W., C.M., C.F., Y.L., S.X.W. and Y.R. analyzed the data and wrote the manuscript with the help of all authors.

Corresponding authors

Correspondence to Cong Ma or Yueguang Rong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, F., Wang, S., Tian, R. et al. The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome–lysosome fusion. Cell Res 34, 151–168 (2024). https://doi.org/10.1038/s41422-023-00916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00916-x

This article is cited by

Search

Quick links