Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner

Abstract

Posttranslational modifications add tremendous complexity to proteomes; however, gaps remain in knowledge regarding the function and regulatory mechanism of newly discovered lysine acylation modifications. Here, we compared a panel of non-histone lysine acylation patterns in metastasis models and clinical samples, and focused on 2-hydroxyisobutyrylation (Khib) due to its significant upregulation in cancer metastases. By the integration of systemic Khib proteome profiling in 20 paired primary esophageal tumor and metastatic tumor tissues with CRISPR/Cas9 functional screening, we identified N-acetyltransferase 10 (NAT10) as a substrate for Khib modification. We further showed that Khib modification at lysine 823 in NAT10 functionally contribute to metastasis. Mechanistically, NAT10 Khib modification enhances its interaction with deubiquitinase USP39, resulting in increased NAT10 protein stability. NAT10 in turn promotes metastasis by increasing NOTCH3 mRNA stability in an N4-acetylcytidine-dependent manner. Furthermore, we discovered a lead compound #7586-3507 that inhibited NAT10 Khib modification and showed efficacy in tumor models in vivo at a low concentration. Together, our findings bridge newly identified lysine acylation modifications with RNA modifications, thus providing novel insights into epigenetic regulation in human cancer. We propose that pharmacological inhibition of NAT10 K823 Khib modification constitutes a potential anti-metastasis strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comprehensive landscape of Khib in ESCC metastatic cell lines and tissue samples.
Fig. 2: Integration of proteomic analysis with CRISPR/Cas9 functional screening suggests that Khib modification of NAT10 at K823 is essential for cancer metastasis.
Fig. 3: KAT7 and SIRT7 are the writer and eraser for Khib modification of NAT10, respectively.
Fig. 4: Identification of deubiquitinase USP39 as an interacting protein of NAT10.
Fig. 5: Stabilization of Khib-modified NAT10 by USP39 leads to its upregulation in ESCC.
Fig. 6: NAT10 K823 is clinically and functionally important for ESCC metastasis.
Fig. 7: NAT10 catalyzes NOTCH3 mRNA ac4C modification to increase its stability.
Fig. 8: Pharmacological inhibition of NAT10 by small-molecule compounds offers a therapeutic option.

Similar content being viewed by others

References

  1. Wang, Y., Zhang, J., Li, B. & He, Q. Y. Advances of proteomics in novel PTM discovery: applications in cancer therapy. Small Methods 3, 1900041 (2019).

    Article  Google Scholar 

  2. Choudhary, C. et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Narita, T., Weinert, B. T. & Choudhary, C. Functions and mechanisms of non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 20, 156–174 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Deng, G. et al. Loss of heterozygosity and p53 gene mutations in breast cancer. Cancer Res. 54, 499–505 (1994).

    CAS  PubMed  Google Scholar 

  5. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Birkbak, N. J. et al. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov. 2, 366–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, X. et al. Dissecting esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat. Commun. 12, 5291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, Y. M. et al. Advances in targeted therapy for esophageal cancer. Signal Transduct. Target. Ther. 5, 229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bortolin-Cavaillé, M. L. et al. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res. 50, 6284–6299 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma, S. et al. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 43, 2242–2258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 583, 638–643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, H. et al. Ketogenesis-generated beta-hydroxybutyrate is an epigenetic regulator of CD8(+) T-cell memory development. Nat. Cell Biol. 22, 18–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Simithy, J. et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun. 8, 1141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fang, Y. et al. Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell 28, 748–763.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, H. et al. Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Cell Res. 28, 111–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Dominissini, D. & Rechavi, G. N(4)-acetylation of cytidine in mRNA by NAT10 regulates stability and translation. Cell 175, 1725–1727 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, W. S., Parmigiani, R. B. & Marks, P. A. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Tang, X. et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat. Commun. 8, 318–318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. MacPherson, L. et al. HBO1 is required for the maintenance of leukaemia stem cells. Nature 577, 266–270 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Li, X. et al. Deubiquitinase USP39 and E3 ligase TRIM26 balance the level of ZEB1 ubiquitination and thereby determine the progression of hepatocellular carcinoma. Cell Death Differ. 28, 2315–2332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, J. et al. USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2. Cancer Lett. 449, 114–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X. et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 17, 349–366 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arango, D. et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol. Cell 82, 2797–2814.e11 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. van Nes, J. et al. A NOTCH3 transcriptional module induces cell motility in neuroblastoma. Clin. Cancer Res. 19, 3485–3494 (2013).

    Article  PubMed  Google Scholar 

  26. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786–794 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, H. et al. GSK-3beta-regulated N-acetyltransferase 10 is involved in colorectal cancer invasion. Clin. Cancer Res. 20, 4717–4729 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H. Y. et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 48, 3638–3656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsai, K. et al. Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe 28, 306–312.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Majumder, S. et al. Targeting Notch in oncology: the path forward. Nat. Rev. Drug Discov. 20, 125–144 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Deng, L. et al. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther. 5, 11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrigan, J. A., Jacq, X., Martin, N. M. & Jackson, S. P. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17, 57–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Fioravanti, R. et al. Targeting histone acetylation/deacetylation in parasites: an update (2017–2020). Curr. Opin. Chem. Biol. 57, 65–74 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, W. W. et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat. Commun. 8, 14399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimada, Y. et al. Characterization of 21 newly established esophageal cancer cell lines. Cancer 69, 277–284 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Liao, L. et al. Anti-HIV drug elvitegravir suppresses cancer metastasis via increased proteasomal degradation of m6A methyltransferase METTL3. Cancer Res. 82, 2444–2457 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, X. P. et al. Lomerizine 2HCl inhibits cell proliferation and induces protective autophagy in colorectal cancer via the PI3K/Akt/mTOR signaling pathway. MedComm 2, 453–466 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, C. C. et al. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm. Sin. B 12, 1271–1287 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Hu, H. F. et al. Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission. Theranostics 11, 1828–1844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu, W. W. et al. IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Lett. 425, 88–100 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, W. W. et al. Direct targeting of CREB1 with imperatorin inhibits TGFβ2-ERK signaling to suppress esophageal cancer metastasis. Adv. Sci. 7, 2000925 (2020).

    Article  CAS  Google Scholar 

  43. Xu, W. W. et al. Genome-wide identification of key regulatory lncRNAs in esophageal cancer metastasis. Signal Transduct. Target. Ther. 6, 88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu, H. F. et al. Identification of miR-515-3p and its targets, vimentin and MMP3, as a key regulatory mechanism in esophageal cancer metastasis: functional and clinical significance. Signal Transduct. Target. Ther. 5, 271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFC2501000, 2021YFC2501900), the National Natural Science Foundation of China (82273141, 82073196, 31961160727, 81973339, 82071372), Key Laboratory of Guangdong Higher Education Institutes (2021KSYS009), the Outstanding Scholar Program of Bioland Laboratory (2018GZR110102002), and the Science and Technology Program of Guangzhou (202007030012). We thank Profs. Didier Trono and Vladislav Verkhusha for the plasmids obtained from Addgene.

Author information

Authors and Affiliations

Authors

Contributions

B.L. conceived and designed the study; L.L., Y.H., S.J.L., X.M.Y., Z.C.L., Y.Y.L., J.Y., G.G.Z., C.M.D., X.W., Y.D.Z., T.Y.X. and C.C.Z. acquired, analyzed and interpreted the data; L.L., Y.H., S.J.L. and X.M.Y. performed statistical analysis and drafted the manuscript; H.Y., C.C., A.L., Z.G.L. and J.B.L. provided technical and/or material support and critically revised the manuscript for important intellectual content; B.L. supervised the study. All authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Bin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal experiments were approved by the Ethics Committee for Animal Experiments of Guangzhou Medical University (G2022-084), and mice were cared under standard conditions according to institutional guidelines. The human ESCC specimens were collected in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of Shanghai Chest Hospital, Shanghai Jiao Tong University (No. KS(Y)22278). Informed consent was obtained from each participant.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., He, Y., Li, SJ. et al. Lysine 2-hydroxyisobutyrylation of NAT10 promotes cancer metastasis in an ac4C-dependent manner. Cell Res 33, 355–371 (2023). https://doi.org/10.1038/s41422-023-00793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-023-00793-4

This article is cited by

Search

Quick links