Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget’s disease


Mammary and extramammary Paget’s Diseases (PD) are a malignant skin cancer characterized by the appearance of Paget cells. Although easily diagnosed, its pathogenesis remains unknown. Here, single-cell RNA-sequencing identified distinct cellular states, novel biomarkers, and signaling pathways — including mTOR, associated with extramammary PD. Interestingly, we identified MSI1 ectopic overexpression in basal epithelial cells of human PD skin, and show that Msi1 overexpression in the epidermal basal layer of mice phenocopies human PD at histopathological, single-cell and molecular levels. Using this mouse model, we identified novel biomarkers of Paget-like cells that translated to human Paget cells. Furthermore, single-cell trajectory, RNA velocity and lineage-tracing analyses revealed a putative keratinocyte-to-Paget-like cell conversion, supporting the in situ transformation theory of disease pathogenesis. Mechanistically, the Msi1-mTOR pathway drives keratinocyte-Paget-like cell conversion, and suppression of mTOR signaling with Rapamycin significantly rescued the Paget-like phenotype in Msi1-overexpressing transgenic mice. Topical Rapamycin treatment improved extramammary PD-associated symptoms in humans, suggesting mTOR inhibition as a novel therapeutic treatment in PD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of the epithelial macroenvironment of EMPD skin using 3′-end scRNA-seq.
Fig. 2: Ectopic Msi1 overexpression results in Paget-like phenotype in murine skin.
Fig. 3: Characterization of Paget-like cells in DTG murine skin epidermis using 3′-end scRNA-seq.
Fig. 4: RNA dynamics and lineage tracing analyses favor the basal keratinocyte-Paget cell in situ transformation theory.
Fig. 5: Murine Msi1-induced Paget-like skin and EMPD human skin share common molecular signaling pathways.
Fig. 6: Msi1 activates Her2 signaling pathway.
Fig. 7: Msi1 activates mTOR signaling pathway.
Fig. 8: Topical Rapamycin treatment effectively alleviates PD-associated pathological symptoms in a cohort of human EMPD patients.


  1. 1.

    Kanitakis, J. Mammary and extramammary Paget’s disease. J. Eur. Acad. Dermatol. Venereol. 21, 581–590 (2007).

    CAS  PubMed  Google Scholar 

  2. 2.

    Lopes Filho, L. L. et al. Mammary and extramammary Paget’s disease. An. Bras. Dermatol. 90, 225–231 (2015).

    PubMed  Google Scholar 

  3. 3.

    Sandoval-Leon, A. C., Drews-Elger, K., Gomez-Fernandez, C. R., Yepes, M. M. & Lippman, M. E. Paget’s disease of the nipple. Breast Cancer Res. Treat. 141, 1–12 (2013).

    PubMed  Google Scholar 

  4. 4.

    Lam, C. & Funaro, D. Extramammary Paget’s disease: summary of current knowledge. Dermatol. Clin. 28, 807–826 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Smith, K. J., Tuur, S., Corvette, D., Lupton, G. P. & Skelton, H. G. Cytokeratin 7 staining in mammary and extramammary Paget’s disease. Mod. Pathol. 10, 1069–1074 (1997).

    CAS  PubMed  Google Scholar 

  6. 6.

    Liegl, B. et al. Mammary and extramammary Paget’s disease: an immunohistochemical study of 83 cases. Histopathology 50, 439–447 (2007).

    CAS  PubMed  Google Scholar 

  7. 7.

    Hikita, T., Ohtsuki, Y., Maeda, T. & Furihata, M. Immunohistochemical and fluorescence in situ hybridization studies on noninvasive and invasive extramammary Paget’s disease. Int. J. Surg. Pathol. 20, 441–448 (2012).

    PubMed  Google Scholar 

  8. 8.

    Keatings, L. et al. c-erbB-2 oncoprotein expression in mammary and extramammary Paget’s disease: an immunohistochemical study. Histopathology 17, 243–247 (1990).

    CAS  PubMed  Google Scholar 

  9. 9.

    Fu, W., Lobocki, C. A., Silberberg, B. K., Chelladurai, M. & Young, S. C. Molecular markers in Paget disease of the breast. J. Surg. Oncol. 77, 171–178 (2001).

    CAS  PubMed  Google Scholar 

  10. 10.

    Mori, O., Hachisuka, H., Nakano, S., Sasai, Y. & Shiku, H. Expression of ras p21 in mammary and extramammary Paget’s disease. Arch. Pathol. Lab. Med. 114, 858–861 (1990).

    CAS  PubMed  Google Scholar 

  11. 11.

    Liegl, B., Horn, L. C. & Moinfar, F. Androgen receptors are frequently expressed in mammary and extramammary Paget’s disease. Mod. Pathol. 18, 1283–1288 (2005).

    CAS  PubMed  Google Scholar 

  12. 12.

    Morbeck, D. et al. GATA3 expression in primary vulvar Paget disease: a potential pitfall leading to misdiagnosis of pagetoid urothelial intraepithelial neoplasia. Histopathology 70, 435–441 (2017).

    PubMed  Google Scholar 

  13. 13.

    Zhang, G., Zhao, Y., Abdul-Karim, F. W. & Yang, B. P16 expression in primary vulvar extramammary Paget Disease. Int. J. Gynecol. Pathol. (2019).

  14. 14.

    Ito, T., Kaku-Ito, Y. & Furue, M. The diagnosis and management of extramammary Paget’s disease. Exp. Rev. Anticancer Ther. 18, 543–553 (2018).

    CAS  Google Scholar 

  15. 15.

    Sek, P., Zawrocki, A., Biernat, W. & Piekarski, J. H. HER2 molecular subtype is a dominant subtype of mammary Paget’s cells. An immunohistochemical study. Histopathology 57, 564–571 (2010).

    PubMed  Google Scholar 

  16. 16.

    Caliskan, M. et al. Paget’s disease of the breast: the experience of the European Institute of Oncology and review of the literature. Breast Cancer Res. Treat. 112, 513–521 (2008).

    PubMed  Google Scholar 

  17. 17.

    Marucci, G. et al. Toker cells are probably precursors of Paget cell carcinoma: a morphological and ultrastructural description. Virchows Arch. 441, 117–123 (2002).

    PubMed  Google Scholar 

  18. 18.

    Mehta, N. J., Torno, R. & Sorra, T. Extramammary Paget’s disease. South Med. J. 93, 713–715 (2000).

    CAS  PubMed  Google Scholar 

  19. 19.

    Nakamura, M., Okano, H., Blendy, J. A. & Montell, C. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13, 67–81 (1994).

    CAS  PubMed  Google Scholar 

  20. 20.

    Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242 (1996).

    CAS  PubMed  Google Scholar 

  21. 21.

    Sakakibara, S., Nakamura, Y., Satoh, H. & Okano, H. Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J. Neurosci. 21, 8091–8107 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kayahara, T. et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett. 535, 131–135 (2003).

    CAS  PubMed  Google Scholar 

  23. 23.

    Li, N. et al. The Msi family of RNA-binding proteins function redundantly as intestinal oncoproteins. Cell Rep. 13, 2440–2455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yousefi, M. et al. Msi RNA-binding proteins control reserve intestinal stem cell quiescence. J. Cell Biol. 215, 401–413 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Stuart, T. et al. Comprehensive Integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hu, H. B., Yang, X. P., Zhou, P. X., Yang, X. A. & Yin, B. High expression of keratin 6C is associated with poor prognosis and accelerates cancer proliferation and migration by modulating epithelial-mesenchymal transition in lung adenocarcinoma. Genes Genom. 42, 179–188 (2019).

    Google Scholar 

  29. 29.

    Wang, S. et al. Single cell transcriptomics of human epidermis reveals basal stem cell transition states. bioRxiv (2019).

  30. 30.

    Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Mori, O., Karashima, T., Matsuo, K. & Hashimoto, T. Epidermal cell cultures from involved skin of patients with mammary and extramammary Paget’s disease. Kurume Med. J. 44, 165–169 (1997).

    CAS  PubMed  Google Scholar 

  32. 32.

    Thomas, P. D. et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 13, 2129–2141 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Iga, N. et al. Accumulation of exhausted CD8+ T cells in extramammary Paget’s disease. PLoS One 14, e0211135 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Sugiyama-Nakagiri, Y., Akiyama, M., Shibata, S., Okano, H. & Shimizu, H. Expression of RNA-binding protein Musashi in hair follicle development and hair cycle progression. Am. J. Pathol. 168, 80–92 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Benoit, S. et al. Elevated serum levels of calcium-binding S100 proteins A8 and A9 reflect disease activity and abnormal differentiation of keratinocytes in psoriasis. Br. J. Dermatol. 155, 62–66 (2006).

    CAS  PubMed  Google Scholar 

  38. 38.

    Marionnet, C. et al. Modulation of gene expression induced in human epidermis by environmental stress in vivo. J. Invest. Dermatol. 121, 1447–1458 (2003).

    CAS  PubMed  Google Scholar 

  39. 39.

    Leyva-Castillo, J. M., Hener, P., Jiang, H. & Li, M. TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J. Invest. Dermatol. 133, 154–163 (2013).

    CAS  PubMed  Google Scholar 

  40. 40.

    Hildebrand, J. D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203 (2005).

    CAS  PubMed  Google Scholar 

  41. 41.

    Wolber, R. A., Dupuis, B. A. & Wick, M. R. Expression of c-erbB-2 oncoprotein in mammary and extramammary Paget’s disease. Am. J. Clin. Pathol. 96, 243–247 (1991).

    CAS  PubMed  Google Scholar 

  42. 42.

    Xu, T. et al. [CMTM5 inhibits the tumor cell behavior of prostate cancer by downregulation of HER2]. Beijing Da Xue Xue Bao Yi Xue Ban 42, 386–390 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    Fu, Y. F., Gui, R. & Liu, J. HER-2-induced PI3K signaling pathway was involved in the pathogenesis of gastric cancer. Cancer Gene. Ther. 22, 145–153 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhong, H. et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  45. 45.

    Hudson, C. C. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell Biol. 22, 7004–7014 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Norrenberg, S. et al. Retrospective study: Rapamycin or rapalog 0.1% cream for facial angiofibromas in tuberous sclerosis complex: evaluation of treatment effectiveness and cost. Br. J. Dermatol. 179, 208–209 (2018).

    CAS  PubMed  Google Scholar 

  47. 47.

    Lin, N. et al. Expression of the p38 MAPK, NF-kappaB and cyclin D1 in extramammary Paget’s disease. J. Dermatol. Sci. 45, 187–192 (2007).

    CAS  PubMed  Google Scholar 

  48. 48.

    Chen, S. Y. et al. Concordant overexpression of phosphorylated ATF2 and STAT3 in extramammary Paget’s disease. J. Cutan. Pathol. 36, 402–408 (2009).

    PubMed  Google Scholar 

  49. 49.

    Cosgarea, I., Zaremba, A. & Hillen, U. Extramammary Paget’s disease. Hautarzt 70, 670–676 (2019).

    CAS  PubMed  Google Scholar 

  50. 50.

    Ghazizadeh, Z. et al. Prospective isolation of ISL1(+) cardiac progenitors from human ESCs for myocardial infarction therapy. Stem Cell Rep. 10, 848–859 (2018).

    CAS  Google Scholar 

  51. 51.

    Smith, N. R. et al. Cell adhesion molecule CD166/ALCAM functions within the crypt to orchestrate murine intestinal stem cell homeostasis. Cell. Mol. Gastroenterol. Hepatol. 3, 389–409 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Du, X. et al. Extramammary Paget’s disease mimicking acantholytic squamous cell carcinoma in situ: a case report. J. Cutan. Pathol. 37, 683–686 (2010).

    PubMed  Google Scholar 

  53. 53.

    Tanskanen, M., Jahkola, T., Asko-Seljavaara, S., Jalkanen, J. & Isola, J. HER2 oncogene amplification in extramammary Paget’s disease. Histopathology 42, 575–579 (2003).

    CAS  PubMed  Google Scholar 

  54. 54.

    Cho, Z. et al. Podoplanin expression in peritumoral keratinocytes predicts aggressive behavior in extramammary Paget’s disease. J. Dermatol. Sci. 87, 29–35 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Kudinov, A. E. et al. Musashi-2 (MSI2) supports TGF-beta signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc. Natl. Acad. Sci. USA 113, 6955–6960 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Chen, S. et al. Immunohistochemical analysis of the mammalian target of rapamycin signalling pathway in extramammary Paget’s disease. Br. J. Dermatol. 161, 357–363 (2009).

    CAS  PubMed  Google Scholar 

  57. 57.

    Hata, H. et al. mTOR expression correlates with invasiveness and progression of extramammary Paget’s disease. J. Eur. Acad. Dermatol. Venereol. 30, 1238–1239 (2016).

    CAS  PubMed  Google Scholar 

  58. 58.

    Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    Kato, R. et al. Efficacy of everolimus in patients with advanced renal cell carcinoma refractory or intolerant to VEGFR-TKIs and safety compared with prior VEGFR-TKI treatment. Jpn. J. Clin. Oncol. 44, 479–485 (2014).

    PubMed  Google Scholar 

  60. 60.

    Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Sasaki, M. et al. Anorectal mucinous adenocarcinoma associated with latent perianal Paget’s disease. Am. J. Gastroenterol. 85, 199–202 (1990).

    CAS  PubMed  Google Scholar 

  62. 62.

    Yim, J. H., Wick, M. R., Philpott, G. W., Norton, J. A. & Doherty, G. M. Underlying pathology in mammary Paget’s disease. Ann. Surg. Oncol. 4, 287–292 (1997).

    CAS  PubMed  Google Scholar 

  63. 63.

    Morandi, L. et al. Intraepidermal cells of Paget’s carcinoma of the breast can be genetically different from those of the underlying carcinoma. Hum. Pathol. 34, 1321–1330 (2003).

    PubMed  Google Scholar 

  64. 64.

    Katz, Y. et al. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state. Elife 3, e03915 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Espersen, M. L., Olsen, J., Linnemann, D., Hogdall, E. & Troelsen, J. T. Clinical implications of intestinal stem cell markers in colorectal cancer. Clin. Colorectal Cancer 14, 63–71 (2015).

    PubMed  Google Scholar 

  66. 66.

    Fan, J. et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241–244 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 10, 650 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Cheng, J. B. et al. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep. 25, 871–883 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Jin, S., MacLean, A. L., Peng, T. & Nie, Q. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 34, 2077–2086 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Zhang, H. M. et al. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res. 43, D76–D81 (2015).

    CAS  PubMed  Google Scholar 

  74. 74.

    La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  Google Scholar 

  76. 76.

    Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).

    Google Scholar 

  77. 77.

    Wang, S. et al. Transformation of the intestinal epithelium by the MSI2 RNA-binding protein. Nat. Commun. 6, 6517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Ma, X. et al. Msi2 maintains quiescent state of hair follicle stem cells by directly repressing the Hh signaling pathway. J. Invest. Dermatol. 137, 1015–1024 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


Z. Yu is supported by the National Natural Science Foundation of China (81772984, 81572614); Beijing Nature Foundation Grant (5162018); the Major Project for Cultivation Technology (2016ZX08008001, 2014ZX08008001); Basic Research Program (2019TC227, 2019TC088); and SKLB Open Grant (2020SKLAB6–18). B.A. is supported by a NIH Grant R01AR42288. M.V.P. is supported by a Pew Charitable Trust Grant, NIH Grants R01-AR067273 and R01-AR069653, NSF Grant DMS1763272, and Simons Foundation Grant (594598, Q.N.). This work is also supported by NIH grants U01-AR073159 (to Q.N., M.V.P., and X.D.) and U54-CA217378 (to Arthur Lander, John Lowengrub, and Marian Waterman). Q.N. is also supported by NSF grants DMS176372 and DMS1562176, the Jayne Koskinas Ted Giovanis Foundation for Health and Policy jointly with the Breast Cancer Research Foundation, and NSF-Simons Foundation (594598). C.F.G.-J. is supported by UC Irvine Chancellor’s ADVANCE Postdoctoral Fellowship Program, NSF-Simons Postdoctoral Fellowship, NSF Grant DMS1763272, and Simons Foundation Grant (594598, Q.N.) and a kind gift from the Howard Hughes Medical Institute Hanna H. Gray Postdoctoral Fellowship Program. G.Z. is supported by the Key Project of the National Natural Science Foundation of China (81830093) and the CAMS Innovation Fund for Medical Sciences (CIFMS; No. 2019-I2M-1-003).

Author information




Z. Yu designed research; Y.S., C.F.G.-J., Z.C., Y. Tang, X.M., C.L., X.B., M.D., L.B., Y. Tian, R.L., R.Z., J.X., X.S., S.D., Y.L., Y. Zhu and S.S. performed research; C.F.G-J. performed scRNA-seq and bioinformatic analyses and curated scRNA-seq data; Q.N. and Z. Yu supervised scRNA-seq and bioinformatic analyses; Y.S., C.F.G.-J., H.C., G.Z., J.S., F.R., L.X., Z. Ying, Y. Zhao, X.D., C.J.L., B.A., M.V.P, Q.N., and Z. Yu analyzed data; C.F.G-J. and Y.S. produced figures; C.F.G.-J., Y.S., Q.N., M.V.P. and Z. Yu wrote the manuscript.

Corresponding author

Correspondence to Zhengquan Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information, Data S1

Supplementary information, Fig. S1

Supplementary information, Fig. S2

Supplementary information, Fig. S3

Supplementary information, Fig. S4

Supplementary information, Fig. S5

Supplementary information, Fig. S6

Supplementary information, Fig. S7

Supplementary information, Fig. S8

Supplementary information, Fig. S9

Supplementary information, Fig. S10

Supplementary information, Fig. S11

Supplementary information, Fig. S12

Supplementary information, Fig. S13

Supplementary information, Fig. S14

Supplementary information, Fig. S15

Supplementary information, Fig. S16

Supplementary information, Fig. S17

Supplementary information, Fig. S18

Supplementary information, Fig. S19

Supplementary information, Fig. S20

Supplementary information, Fig. S21

Supplementary information, Fig. S22

Supplementary information, Fig. S23

Supplementary information, Fig. S24

Supplementary information, Fig. S25

Supplementary information, Fig. S26

Supplementary information, Fig. S27

Supplementary information, Table S1

Supplementary information, Table S2

Supplementary information, Table S3

Supplementary information, Table S4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Guerrero-Juarez, C.F., Chen, Z. et al. The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget’s disease. Cell Res 30, 854–872 (2020).

Download citation

Further reading


Quick links