Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Functional proteomics of colon cancer Consensus Molecular Subtypes

Abstract

Background

The Colorectal Cancer Subtyping Consortium established four Consensus Molecular Subtypes (CMS) in colorectal cancer: CMS1 (microsatellite-instability [MSI], Immune), CMS2 (Canonical, epithelial), CMS3 (Metabolic), and CMS4 (Mesenchymal). However, only MSI tumour patients have seen a change in their disease management in clinical practice. This study aims to characterise the proteome of colon cancer CMS and broaden CMS’s clinical utility.

Methods

One-hundred fifty-eight paraffin samples from stage II-III colon cancer patients treated with adjuvant chemotherapy were analysed through DIA-based mass-spectrometry proteomics.

Results

CMS1 exhibited overexpression of immune-related proteins, specifically related to neutrophils, phagocytosis, antimicrobial response, and a glycolytic profile. These findings suggested potential therapeutic strategies involving immunotherapy and glycolytic inhibitors. CMS3 showed overexpression of metabolic proteins. CMS2 displayed a heterogeneous protein profile. Notably, two proteomics subtypes within CMS2, with different protein characteristics and prognoses, were identified. CMS4 emerged as the most distinct group, featuring overexpression of proteins related to angiogenesis, extracellular matrix, focal adhesion, and complement activation. CMS4 showed a high metastatic profile and suggested possible chemoresistance that may explain its worse prognosis.

Conclusions

DIA proteomics revealed new features for each colon cancer CMS subtype. These findings provide valuable insights into potential therapeutic targets for colorectal cancer subtypes in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functional network of the EPIC-XS colon cancer proreins.
Fig. 2: Functional node activities according to CMS groups.
Fig. 3: Significance Analysis of Microarrays of the two CMS2 proteomics-based subtypes.
Fig. 4: Functional node activities comparing the two CMS2 proteomics-based subtypes.
Fig. 5: Flowchart highlighting the main characteristics of each CMS.

Similar content being viewed by others

Data availability

Proteomics raw data are available in the ProteomeXchange Consortium via the PRIDE (http://www.ebi.ac.uk/pride) partner repository with the data set identifier PXD044935.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Argilés G, Tabernero J, Labianca R, Hochhauser D, Salazar R, Iveson T, et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31:1291–305.

    Article  PubMed  Google Scholar 

  3. Viñal D, Martinez-Recio S, Martinez-Perez D, Ruiz-Gutierrez I, Jimenez-Bou D, Peña-Lopez J, et al. Clinical score to predict recurrence in patients with stage II and stage III colon cancer. Cancers (Basel). 2022;14:5891.

    Article  PubMed  Google Scholar 

  4. Weiser MR, Hsu M, Bauer PS, Chapman WC, González IA, Chatterjee D, et al. Clinical calculator based on molecular and clinicopathologic characteristics predicts recurrence following resection of stage I-III colon cancer. J Clin Oncol. 2021;39:911–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marshall JL, Haller DG, de Gramont A, Hochster HS, Lenz HJ, Ajani JA, et al. Adjuvant therapy for stage II and III colon cancer: Consensus Report of the International Society of Gastrointestinal Oncology. Gastrointest Cancer Res. 2007;1:146–54.

    PubMed  PubMed Central  Google Scholar 

  6. Rodriguez-Salas N, Dominguez G, Barderas R, Mendiola M, García-Albéniz X, Maurel J, et al. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol. 2017;109:9–19.

    Article  PubMed  Google Scholar 

  7. Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2009;27:872–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valenzuela G, Canepa J, Simonetti C, Solo de Zaldívar L, Marcelain K, González-Montero J. Consensus molecular subtypes of colorectal cancer in clinical practice: A translational approach. World J Clin Oncol. 2021;12:1000–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. López-Camacho E, Prado-Vázquez G, Martínez-Pérez D, Ferrer-Gómez M, Llorente-Armijo S, López-Vacas R, et al. A novel molecular analysis approach in colorectal cancer suggests new treatment opportunities. Cancers (Basel). 2023;15:1104.

    Article  PubMed  Google Scholar 

  11. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87.e3.

    Article  CAS  PubMed  Google Scholar 

  12. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9.

    Article  CAS  PubMed  Google Scholar 

  14. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl J Med. 2020;383:2207–18.

    Article  PubMed  Google Scholar 

  15. Cho WC. Proteomics technologies and challenges. Genomics Proteom Bioinforma. 2007;5:77–85.

    Article  CAS  Google Scholar 

  16. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513:382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR, Wen B, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 2019;177:1035–49.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frejno M, Zenezini Chiozzi R, Wilhelm M, Koch H, Zheng R, Klaeger S, et al. Pharmacoproteomic characterisation of human colon and rectal cancer. Mol Syst Biol. 2017;13:951.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteom. 2012;11:O111.016717.

    Article  Google Scholar 

  20. Bruderer R, Muntel J, Müller S, Bernhardt OM, Gandhi T, Cominetti O, et al. Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol Cell Proteom. 2019;18:1242–54.

    Article  CAS  Google Scholar 

  21. Guo T, Aebersold R. Recent advances of data-independent acquisition mass spectrometry-based proteomics. Proteomics. 2023;23:e2200011.

    Article  PubMed  Google Scholar 

  22. Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, et al. A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 2020;9:1750202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rao J, Wan X, Tou F, He Q, Xiong A, Chen X, et al. Molecular characterization of advanced colorectal cancer using serum proteomics and metabolomics. Front Mol Biosci. 2021;8:687229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steffen P, Li J, Chandra J, Ahadi MS, Gill AJ, Engel AF, et al. Molecular features of lymph node metastasis in T1/2 colorectal cancer from formalin-fixed paraffin-embedded archival specimens. J Proteome Res. 2021;20:1304–12.

    Article  CAS  PubMed  Google Scholar 

  25. Gámez-Pozo A, Ferrer NI, Ciruelos E, López-Vacas R, Martínez FG, Espinosa E, et al. Shotgun proteomics of archival triple-negative breast cancer samples. Proteom Clin Appl. 2013;7:283–91.

    Article  Google Scholar 

  26. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

    Article  CAS  PubMed  Google Scholar 

  27. Gámez-Pozo A, Berges-Soria J, Arevalillo JM, Nanni P, López-Vacas R, Navarro H, et al. Combined label-free quantitative proteomics and microRNA expression analysis of breast cancer unravel molecular differences with clinical implications. Cancer Res. 2015;75:2243–53.

    Article  PubMed  Google Scholar 

  28. Lauritzen S. Graphical models. Oxford, UK.: Oxford University Press;1996.

  29. Chow C, Liu C. Approximating discrete probability distributions with dependence trees. IEEE Trans Inf Theor. 1968;14:462–7.

    Article  Google Scholar 

  30. Kruskal J. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc. 1956;7:48–50.

    Article  MathSciNet  Google Scholar 

  31. Abreu G, Edwards D, Labouriau R. High-dimensional graphical model search with the gRapHD R Package. J Stat Softw. 2010;37:1–18.

    Article  Google Scholar 

  32. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  33. Gámez-Pozo A, Trilla-Fuertes L, Berges-Soria J, Selevsek N, López-Vacas R, Díaz-Almirón M, et al. Functional proteomics outlines the complexity of breast cancer molecular subtypes. Sci Rep. 2017;7:10100.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34:374–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, McDonald ER, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines—a resource for biomedical studies. Mol Cancer. 2017;16:116.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fichtner M, Bozkurt E, Salvucci M, McCann C, McAllister KA, Halang L, et al. Molecular subtype-specific responses of colon cancer cells to the SMAC mimetic Birinapant. Cell Death Dis. 2020;11:1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Linnekamp JF, Hooff SRV, Prasetyanti PR, Kandimalla R, Buikhuisen JY, Fessler E, et al. Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models. Cell Death Differ. 2018;25:616–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ronen J, Hayat S, Akalin A. Evaluation of colorectal cancer subtypes and cell lines using deep learning. Life Sci Alliance. 2019;2:e201900517.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Borràs DM, Verbandt S, Ausserhofer M, Sturm G, Lim J, Verge GA, et al. Single cell dynamics of tumor specificity vs bystander activity in CD8. Cell Discov. 2023;9:114.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hale VL, Jeraldo P, Chen J, Mundy M, Yao J, Priya S, et al. Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Med. 2018;10:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Imkeller K, Ambrosi G, Klemm N, Claveras Cabezudo A, Henkel L, Huber W, et al. Metabolic balance in colorectal cancer is maintained by optimal Wnt signaling levels. Mol Syst Biol. 2022;18:e10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee SW, Kim HK, Naidansuren P, Ham KA, Choi HS, Ahn HY, et al. Peroxidasin is essential for endothelial cell survival and growth signaling by sulfilimine crosslink-dependent matrix assembly. FASEB J. 2020;34:10228–41.

    Article  CAS  PubMed  Google Scholar 

  46. Infante JR, Weiss GJ, Jones S, Tibes R, Bauer TM, Bendell JC, et al. Phase I dose-escalation studies of SNX-5422, an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumours. Eur J Cancer. 2014;50:2897–904.

    Article  CAS  PubMed  Google Scholar 

  47. Yu Z, Wang J, Cai X, Gao Z, Wang S, Gu Y. Analysis of pemetrexed-based chemotherapy in the treatment of advanced colorectal cancer. Ann Transl Med. 2020;8:1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onozawa H, Saito M, Saito K, Kanke Y, Watanabe Y, Hayase S, et al. Annexin A1 is involved in resistance to 5-FU in colon cancer cells. Oncol Rep. 2017;37:235–40.

    Article  PubMed  Google Scholar 

  49. Cheng M, Jiang Y, Yang H, Zhao D, Li L, Liu X. FLNA promotes chemoresistance of colorectal cancer through inducing epithelial-mesenchymal transition and smad2 signaling pathway. Am J Cancer Res. 2020;10:403–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Komor MA, Bosch LJ, Coupé VM, Rausch C, Pham TV, Piersma SR, et al. Proteins in stool as biomarkers for non-invasive detection of colorectal adenomas with high risk of progression. J Pathol. 2020;250:288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Q, Zhu G, Lin C, Lin P, Chen H, He R, et al. Vimentin affects colorectal cancer proliferation, invasion, and migration via regulated by activator protein 1. J Cell Physiol. 2021;236:7591–604.

    Article  CAS  PubMed  Google Scholar 

  53. Wang Z, Jia L, Sun Y, Li C, Zhang L, Wang X, et al. CORO1C is associated with poor prognosis and promotes metastasis through PI3K/AKT pathway in colorectal cancer. Front Mol Biosci. 2021;8:682594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghoshdastider U, Sendoel A. Exploring the pan-cancer landscape of posttranscriptional regulation. Cell Rep. 2023;42:113172.

    Article  CAS  PubMed  Google Scholar 

  55. Kosti I, Jain N, Aran D, Butte AJ, Sirota M. Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Sci Rep. 2016;6:24799.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to particularly acknowledge the patients and the Biobank of Hospital La Paz integrated into the Spanish National Biobanks Network for their collaboration.

Funding

This work was supported by EPIC-XS, project number 823839, funded by the Horizon 2020 programme of the European Union.

Author information

Authors and Affiliations

Authors

Contributions

DM-P, PP-W, DV, NR-S, AC, and JF participated in the data curation. RL-V, LK, and AD contributed to the methodology. DM-L, AG-P, JAFV, JF, and LT-F did the formal analyses. JF and LT-F designed the study. LT-F wrote the original draft. JF and AG-P revised the manuscript.

Corresponding authors

Correspondence to Jaime Feliu or Lucía Trilla-Fuertes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

The work described has been carried out in accordance with the Declaration of Helsinki. Approval for the study was obtained from the La Paz University Hospital Ethical Committee (PI-1019) and informed written consent was obtained for each participant in the study.

Consent for publication

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feliu, J., Gámez-Pozo, A., Martínez-Pérez, D. et al. Functional proteomics of colon cancer Consensus Molecular Subtypes. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02650-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02650-6

Search

Quick links