Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Single-cell sequencing reveals VEGFR as a potential target for CAR-T cell therapy in chordoma

Abstract

Background

Chordomas are rare osseous neoplasms with a dismal prognosis when they recur. Here we identified cell surface proteins that could potentially serve as novel immunotherapeutic targets in patients with chordoma.

Methods

Fourteen chordoma samples from patients attending Xuanwu Hospital Capital Medical University were subjected to single-cell RNA sequencing. Target molecules were identified on chordoma cells and cancer metastasis-related signalling pathways characterised. VEGFR-targeting CAR-T cells and VEGFR CAR-T cells with an additional TGF-β scFv were synthesised and their in vitro antitumor activities were evaluated, including in a primary chordoma organoid model.

Results

Single-cell transcriptome sequencing identified the chordoma-specific antigen VEGFR and TGF-β as therapeutic targets. VRGFR CAR-T cells and VEGFR/TGF-β scFv CAR-T cells recognised antigen-positive cells and exhibited significant antitumor effects through CAR-T cell activation and cytokine secretion. Furthermore, VEGFR/TGF-β scFv CAR-T cells showed enhanced and sustained cytotoxicity of chordoma cell lines in vitro compared with VRGFR CAR-T cells.

Conclusions

This study provides a comprehensive single-cell landscape of human chordoma and highlights its heterogeneity and the role played by TGF-β in chordoma progression. Our findings substantiate the potential of VEGFR as a target for CAR-T cell therapies in chordoma which, together with modulated TGF-β signalling, may augment the efficacy of CAR-T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell heterogeneity landscape of human chordoma.
Fig. 2: Cell communication network analysis of the chordoma tumour microenvironment.
Fig. 3: Generation and characterisation of VEGFR CAR and VEGFR/TGF-β CAR-T cells.
Fig. 4: VEGFR/TGF-β scFv CAR-T cells enhance anti-tumour cytotoxicity of cells in vitro.
Fig. 5: VEGFR/TGF-β scFv CAR-T cells can manipulate the TME to enhance anti-tumour efficacy.
Fig. 6: The therapeutic efficacy of VEGFR/TGF-β scFv CAR-T cells is superior to VEGFR CAR-T cells when targeting primary chordoma cells.

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are publicly accessible from the NGDC Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa-human/), accession number HRA006471.

Code availability

Additionally, the code utilised in our study is available from a dedicated GitHub repository, accessible at https://github.com/restore1997/chordoma2024.

References

  1. Walcott BP, Nached BV, Mohyeldin A, Coumans J-V, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012;13:e69–76.

    Article  PubMed  Google Scholar 

  2. Shihabi AAI, Davarifar A, Nguyen HTL, Tavanaie N, Nelson SD, Yanagawa J, et al. Personalized chordoma organoids for drug discovery studies. Sci Adv. 2022;8:eabl3674.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Denaro L, Berton A, Ciuffreda M, Loppini M, Candela V, Brandi ML, et al. Surgical management of chordoma: a systematic review. J Spinal Cord Med. 2020;43:797–812.

    Article  PubMed  Google Scholar 

  4. Bongers MER, Dea N, Ames CP, Schwawb JH. Surgical Strategies for Chordoma. Neurosurg Clin N. Am. 2020;31:251–61.

    Article  PubMed  Google Scholar 

  5. Kuang L, Lv G, Wang B, Li L, Dai Y, Li Y. Overexpression of adenosine deaminase acting on RNA 1 in chordoma tissues is associated with chordoma pathogenesis by reducing miR‑125a and miR‑10a expression. Mol Med Rep. 2015;12:93–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hung YP, Diaz-Perez JA, Cote GM, Wejde J, Schwab,V Nardi JH, et al. Dedifferentiated chordoma: clinicopathologic and molecular characteristics with integrative analysis. Am J Surg Pathol. 2020;44:1213–23.

    Article  PubMed  Google Scholar 

  7. Colia V, Stacchiotti S. Medical treatment of advanced chordomas. Eur J Cancer. 2017;83:220–8.

    Article  PubMed  Google Scholar 

  8. Fletcher CBJ, Anonescu C, Merens F. WHO classification of tumours: soft tissue and bone tumours. Vol. 3 (WHO Classification of Tumours Editorial Board; 2020).

  9. Wang L, Wu Z, Tian K, Wang K, Li D, Ma J, et al. Clinical features and surgical outcomes of patients with skull base chordoma: a retrospective analysis of 238 patients. J Neurosurg. 2017;127:1257–67.

    Article  PubMed  Google Scholar 

  10. Zhang Q, Fei L, Han R, Huang R, Wang Y, Chen H, et al. Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov. 2022;8:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang M, Tang X, Zhang Z, Gu L, Wei H, Zhao S, et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics. 2020;10:7622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther. 2022;7:117.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lanitis E, Kosti P, Ronet C, Cribioli E, Rota G, Spill A, et al. VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J Immunother Cancer. 2021;9:e002151.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, et al. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther. 2018;26:1855–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26:2839–45.

    Article  CAS  PubMed  Google Scholar 

  17. Derynck R, Turley SJ, Akhurst RJ. TGFbeta biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 2021;18:9–34.

    Article  PubMed  Google Scholar 

  18. Duan W, Zhang B, Li X, Chen W, Jia S, Xin Z, et al. Single-cell transcriptome profiling reveals intra-tumoral heterogeneity in human chordomas. Cancer Immunol Immunother. 2022;71:2185–95.

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Li S, Wu B, Xu Q, Teng D, Yang T, et al. Landscape of immune cells heterogeneity in liver transplantation by single-cell RNA sequencing analysis. Front Immunol. 2022;13:890019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.e3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20:163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017;355:eaai8478.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuang C-H, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Browaeys R, Saelens W, Saeys Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods. 2020;17:159–62.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Liu Z, Wang X, Wu H, Zhang J, Yang J, et al. Treatment with humanized selective CD19CAR-T cells shows efficacy in highly treated B-ALL patients who have relapsed after receiving murine-based CD19CAR-T therapies. Clin Cancer Res. 2019;25:5595–607.

    Article  CAS  PubMed  Google Scholar 

  26. Weber EW, Maus MV, Mackall CL. The emerging landscape of immune cell therapies. Cell. 2020;181:46–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Xu J, Zhang B, Liu J, Liang C, Meng Q, et al. The reciprocal regulation between host tissue and immune cells in pancreatic ductal adenocarcinoma: new insights and therapeutic implications. Mol Cancer. 2019;18:184.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qiu Y, Chen T, Hu R, Zhu R, Li C, Ruan Y, et al. Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark Res. 2021;9:72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 2021;11:2892–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8:369–80.

    Article  CAS  PubMed  Google Scholar 

  32. Cao HH, Chu JH, Kwan HY, Su T, Yu H, Cheng C-Y, et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci Rep. 2016;6:21731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Elaimy AL, Guru S, Chang C, Ou J, Amante JJ, Zhu LJ, et al. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP beta2-chimaerin. Sci Signal. 2018;11:eaao6897.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Palazon A, Tyrakis PA, Macias D, Velica P, Rundqvist H, Fitzpatrick S, et al. An HIF-1alpha/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell. 2017;32:669–83.e665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC. J Thorac Oncol. 2021;16:205–15.

    Article  CAS  PubMed  Google Scholar 

  36. Peterson TE, Kirkpatrick ND, Huang Y, Farrar CT, Marijt KA, Kloepper J, et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA. 2016;113:4470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Laura Joszt MA. FDA approves third bevacizumab biosimilar. https://www.ajmc.com/view/fda-approves-third-bevacizumab-biosimilar (2022).

  38. Morimoto Y, Ramura R, Ohara K, Kosugi K, Oishi Y, Kuranari Y, et al. Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma. J Neurooncol. 2019;144:65–77.

    Article  CAS  PubMed  Google Scholar 

  39. Akhavan-Sigari R, Gaab MR, Rohde V, Abili M, Ostertag H. Prognostic significance of immunohistochemical expression of VEGFR2 and iNOS in spinal chordoma. Eur Spine J. 2014;23:2416–22.

    Article  PubMed  Google Scholar 

  40. Akhavan-Sigari R, Gaab MR, Rohde V, Brandis A, Tezval H, Abili M, et al. Expression of vascular endothelial growth factor receptor 2 (VEGFR-2), inducible nitric oxide synthase (iNOS), and Ki-M1P in skull base chordoma: a series of 145 tumors. Neurosurg Rev. 2014;37:79–88.

    Article  CAS  PubMed  Google Scholar 

  41. Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022;21:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu J, Shi Q, Lou J, Wang B, Wang W, Niu J, et al. Chordoma recruits and polarizes tumor-associated macrophages via secreting CCL5 to promote malignant progression. J Immunother Cancer. 2023;11:e006808.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tzavlaki K, Moustakas A. TGF-beta signaling. Biomolecules. 2020;10:487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50:924–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Foley M. No convincing evidence. Br Dent J. 2020;229:72.

    Article  CAS  PubMed  Google Scholar 

  47. Ma J, Tian K, Wang L, Wang K, Du J, Li D, et al. High expression of TGF-beta1 predicting tumor progression in skull base chordomas. World Neurosurg. 2019;131:e265–e270.

    Article  PubMed  Google Scholar 

  48. Nixon BG, Gao S, Wang X, Li MO. TGFbeta control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol. 2023;23:346–62.

    Article  CAS  PubMed  Google Scholar 

  49. Ciardiello D, Elez E, Tabernero J, Seoane J. Clinical development of therapies targeting TGFbeta: current knowledge and future perspectives. Ann Oncol. 2020;31:1336–49.

    Article  CAS  PubMed  Google Scholar 

  50. Hoffman SE, AI Abdulmohsen SA, Gupta S, Hauser BM, Meredith DM, Dunn LF, et al. Translational windows in chordoma: a target appraisal. Front Neurol. 2020;11:657.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim B-G, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-beta pathway. J Hematol Oncol. 2021;14:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Long C, Li G, Zhang C, Jiang T, Li Y, Duan X, et al. B7-H3 as a target for CAR-T cell therapy in skull base chordoma. Front Oncol. 2021;11:659662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The role of macrophages in cancer development and therapy. Cancers (Basel). 2021;13:1946.

    Article  CAS  PubMed  Google Scholar 

  55. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21:799–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Y, Fang Y, Chen X, Wang Z, Liang X, Zhang T, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome. Sci Immunol. 2020;5:eaax7969.

    Article  CAS  PubMed  Google Scholar 

  57. Chen W, Dijke PT. Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol. 2016;16:723–40.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Beijing Natural Science Foundation Grant (L212039), National High Level Hospital Clinical Research Funding (2022-PUMCH-D-004), Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (XMLX202138), The “Young Talents” Programme, supported by Beijing Municipal Hospital Administration (QML20210801), the Research and Application of Clinical Characteristic Diagnosis and Treatment Programme, Supported by Beijing Municipal Science & Technology Commission (Z221100007422019), and the CAMS Innovation Fund for Medical Sciences (CIFMS #2021-1-I2M-025).

Author information

Authors and Affiliations

Authors

Contributions

Zan Chen, Wanru Duan, Huantong Wu, and Xinqiang Li contributed to study’s conception and design. Huantong Wu, Xinqiang Li, Boyan Zhang, Penghao Liu, Maoyang Qi, Yueqi Du, Can Zhang performed the experiments and analysed the data. Zan Chen, Wanru Duan, Huantong Wu, Xinqiang Li, and Boyan Zhang wrote and revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wanru Duan or Zan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Medical Ethics Committee of Xuanwu Hospital, Capital Medical University, Beijing, China (Ethics Committee Approval No: [2021]021). Informed consent was obtained from all individual participants included in the study. The study was performed in accordance with the Declaration of Helsinki.

Consent for publication

All authors approved the final manuscript and the submission to this journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, X., Zhang, B. et al. Single-cell sequencing reveals VEGFR as a potential target for CAR-T cell therapy in chordoma. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02635-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02635-5

Search

Quick links