Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational Therapeutics

Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer

Abstract

BACKGROUND

Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies.

Methods

In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer.

Results

Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging.

Conclusion

CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDK7 is a critical regulator of transcription.
Fig. 2: CDK7 phosphorylates the CTD of RNA polymerase II (RNA Pol II) at serine 5 and serine 7 to regulate the initiation of transcription and promoter escape.
Fig. 3: As a component of the general transcription factor complex TFIIH, CDK7 regulates estrogen receptor (ER) activity.
Fig. 4: CDK7 activity is required for the expression of numerous genes involved in TNBC.

Similar content being viewed by others

Data availability

We declare that the materials described in the manuscript, including all relevant figures, are freely available to any scientist wishing to use them for noncommercial purposes, without breaching participant confidentiality.

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15:122.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol. 2009;11:1275–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Swaffer MP, Jones AW, Flynn HR, Snijders AP, Nurse P. CDK substrate phosphorylation and ordering the cell cycle. Cell. 2016;167:1750–61.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schachter MM, Fisher RP. The CDK-activating kinase Cdk7: taking yes for an answer. Cell cycle (Georget, Tex). 2013;12:3239–40.

    Article  CAS  Google Scholar 

  6. Schachter MM, Merrick KA, Larochelle S, Hirschi A, Zhang C, Shokat KM, et al. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol Cell. 2013;50:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galbraith MD, Bender H, Espinosa JM. Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription. 2019;10:118–36.

    Article  CAS  PubMed  Google Scholar 

  8. Serizawa H, Mäkelä TP, Conaway JW, Conaway RC, Weinberg RA, Young RA. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature. 1995;374:280–2.

    Article  CAS  PubMed  Google Scholar 

  9. Wong KH, Jin Y, Struhl K. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol Cell. 2014;54:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Larochelle S, Amat R, Glover-Cutter K, Sansó M, Zhang C, Allen JJ. et al. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II.Nat Struct Mol Biol. 2012;19:1108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM, et al. Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol cell. 2000;6:127–37.

    Article  CAS  PubMed  Google Scholar 

  12. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Teng Y, Lu K, Zhang Q, Zhao L, Huang Y, Ingarra AM, et al. Recent advances in the development of cyclin-dependent kinase 7 inhibitors. Eur J Med Chem. 2019;183:111641.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher RP. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci. 2005;118:5171–80.

    Article  CAS  PubMed  Google Scholar 

  15. Wang M, Wang T, Zhang X, Wu X, Jiang S. Cyclin-dependent kinase 7 inhibitors in cancer therapy. Fut Med Chem. 2020;12:813–33.

    Article  Google Scholar 

  16. Fisher RP. Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription. 2019;10:47–56.

    Article  CAS  PubMed  Google Scholar 

  17. Diab S, Yu M, Wang S. CDK7 inhibitors in cancer therapy: The sweet smell of success? J Med Chem. 2020;63:7458–74.

    Article  CAS  PubMed  Google Scholar 

  18. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14:130–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yankulov KY, Bentley DL. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 1997;16:1638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018;27:1018–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greber BJ, Perez-Bertoldi JM, Lim K, Iavarone AT, Toso DB, Nogales E. The cryoelectron microscopy structure of the human CDK-activating kinase. Proc Natl Acad Sci. 2020;117:22849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lolli G. Structural dissection of cyclin dependent kinases regulation and protein recognition properties. Cell cycle (Georget, Tex). 2010;9:1551–61.

    Article  CAS  Google Scholar 

  23. Lolli G, Lowe ED, Brown NR, Johnson LN. The crystal structure of human CDK7 and its protein recognition properties. Struct (Lond, Engl : 1993). 2004;12:2067–79.

    Article  CAS  Google Scholar 

  24. Fisher RP, Jin P, Chamberlin HM, Morgan DO. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell. 1995;83:47–57.

    Article  CAS  PubMed  Google Scholar 

  25. Yee A, Nichols MA, Wu L, Hall FL, Kobayashi R, Xiong Y. Molecular cloning of CDK7-associated human MAT1, a cyclin-dependent kinase-activating kinase (CAK) assembly factor. Cancer Res. 1995;55:6058–62.

    CAS  PubMed  Google Scholar 

  26. Busso D, Keriel A, Sandrock B, Poterszman A, Gileadi O, Egly JM. Distinct regions of MAT1 regulate cdk7 kinase and TFIIH transcription activities. J Biol Chem. 2000;275:22815–23.

    Article  CAS  PubMed  Google Scholar 

  27. Shiekhattar R, Mermelstein F, Fisher RP, Drapkin R, Dynlacht B, Wessling HC, et al. Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature. 1995;374:283–7.

    Article  CAS  PubMed  Google Scholar 

  28. Greber BJ, Toso DB, Fang J, Nogales E. The complete structure of the human TFIIH core complex. eLife. 2019;8:e44771.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peissert S, Schlosser A, Kendel R, Kuper J, Kisker C. Structural basis for CDK7 activation by MAT1 and Cyclin H. Proc Natl Acad Sci USA. 2020;117:26739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441–70.

    Article  CAS  PubMed  Google Scholar 

  31. Massague J. G1 cell-cycle control and cancer. Nature. 2004;432:298–306.

    Article  CAS  PubMed  Google Scholar 

  32. Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem cell Biol. 1997;29:559–73.

    Article  CAS  PubMed  Google Scholar 

  33. Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell cycle (Georget, Tex). 2018;17:1871–85.

    Article  CAS  Google Scholar 

  34. Canavese M, Santo L, Raje N. Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol Ther 2012;13:451–7.

    Article  CAS  PubMed  Google Scholar 

  35. Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell. 1994;78:713–24.

    Article  CAS  PubMed  Google Scholar 

  36. Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol. 2009;29:5455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994;79:551–5.

    Article  CAS  PubMed  Google Scholar 

  38. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–7.

    Article  CAS  PubMed  Google Scholar 

  39. Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol cell. 2007;25:839–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bisteau X, Paternot S, Colleoni B, Ecker K, Coulonval K, De Groote P, et al. CDK4 T172 phosphorylation is central in a CDK7-dependent bidirectional CDK4/CDK2 interplay mediated by p21 phosphorylation at the restriction point. PLoS Genet. 2013;9:e1003546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Egly JM, Coin F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst). 2011;10:714–21.

    Article  CAS  PubMed  Google Scholar 

  42. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Dev (Camb, Engl). 2013;140:3079–93.

    Article  CAS  Google Scholar 

  43. Compe E, Egly JM. TFIIH: when transcription met DNA repair. Nat Rev Mol cell Biol. 2012;13:343–54.

    Article  CAS  PubMed  Google Scholar 

  44. Kolesnikova O, Radu L, Poterszman A. TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair. Adv protein Chem Struct Biol. 2019;115:21–67.

    Article  CAS  PubMed  Google Scholar 

  45. Cramer P. Organization and regulation of gene transcription. Nature. 2019;573:45–54.

    Article  CAS  PubMed  Google Scholar 

  46. Abdulrahman W, Iltis I, Radu L, Braun C, Maglott-Roth A, Giraudon C, et al. ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities. Proc Natl Acad Sci USA. 2013;110:E633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther. 2017;173:83–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schier AC, Taatjes DJ. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev. 2020;34:465–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3’-RNA-processing factors. Nature. 2004;430:223–6.

    Article  CAS  PubMed  Google Scholar 

  50. Jeronimo C, Collin P, Robert F. The RNA polymerase II CTD: the increasing complexity of a low-complexity protein domain. J Mol Biol. 2016;428:2607–22.

    Article  CAS  PubMed  Google Scholar 

  51. Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol cell. 2009;34:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010;24:2303–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang K, Gao X, Gilmore JM, Florens L, Washburn MP, Smith E, et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol. 2015;35:928–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Olson CM, Liang Y, Leggett A, Park WD, Li L, Mills CE, et al. Development of a Selective CDK7 Covalent Inhibitor Reveals Predominant Cell-Cycle Phenotype. Cell Chem Biol. 2019;26:792–803.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, et al. Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene. 2002;21:4921–31.

    Article  CAS  PubMed  Google Scholar 

  56. Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115:751–63.

    Article  PubMed  Google Scholar 

  57. Ali S, Heathcote DA, Kroll SH, Jogalekar AS, Scheiper B, Patel H, et al. The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res. 2009;69:6208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Marineau JJ, Hamman KB, Hu S, Alnemy S, Mihalich J, Kabro A, et al. Discovery of SY-5609: a selective, noncovalent inhibitor of CDK7. J Med Chem. 2022;65:1458–80.

    Article  CAS  PubMed  Google Scholar 

  59. Patel H, Periyasamy M, Sava GP, Bondke A, Slafer BW, Kroll SHB, et al. ICEC0942, an orally bioavailable selective inhibitor of CDK7 for cancer treatment. Mol Cancer Ther. 2018;17:1156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coombes RC, Howell S, Lord SR, Kenny L, Mansi J, Mitri Z, et al. Dose escalation and expansion cohorts in patients with advanced breast cancer in a Phase I study of the CDK7-inhibitor samuraciclib. Nat Commun. 2023;14:4444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu S, Marineau JJ, Rajagopal N, Hamman KB, Choi YJ, Schmidt DR, et al. Discovery and characterization of SY-1365, a selective, covalent inhibitor of CDK7. Cancer Res. 2019;79:3479–91.

    Article  PubMed  Google Scholar 

  62. Li B, Ni Chonghaile T, Fan Y, Madden SF, Klinger R, O’Connor AE, et al. Therapeutic rationale to target highly expressed CDK7 conferring poor outcomes in triple-negative breast cancer. Cancer Res. 2017;77:3834–45.

    Article  CAS  PubMed  Google Scholar 

  63. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature. 2014;511:616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clopper KC, Taatjes DJ. Chemical inhibitors of transcription-associated kinases. Curr Opin Chem Biol. 2022;70:102186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma M, Bashir B, Hamilton E, Juric D, Papadopoulos K, Richardson D, et al. 518MO Tolerability and preliminary clinical activity of SY-5609, a highly potent and selective oral CDK7 inhibitor, in patients with advanced solid tumors. Ann Oncol. 2021;32:S587–S8.

    Article  Google Scholar 

  66. Yu D, Jeon Y, Park D, Seo M, Ahn W, Kim J, et al. Abstract 4855: Development of highly selective CDK7 inhibitor Q901 for solid tumors. Cancer Res. 2020;80:4855.

    Article  Google Scholar 

  67. DYYJDPMSWAJKK N. Abstract 1953: q901, a selective CDK7 inhibitor, a potential new strategy for primary and CDK4/6 inhibitor resistant ER-positive breast cancer. Cancer Res. 2021; 81:1953.

  68. Satyam LK, Poddutoori R, Thiyagarajan S, Mukherjee S, Kaza LN, Charamanna K, et al. Potent anti-tumor activity of AUR102, a selective covalent inhibitor of CDK7. Eur J Cancer. 2020;138:S47.

    Article  Google Scholar 

  69. Shapiro G, Barve MA, Bhave MA, Subbiah V, Uttamsingh S, Sharma K, Andrianova L, Patnaik A. A phase 1 dose-escalation and expansion-cohort study of the oral CDK7 inhibitor XL102 as a single-agent and in combination therapy in patients (pts) with advanced solid tumors. J Clin Oncol. 2022;40:TPS3176.

    Article  Google Scholar 

  70. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im SA, et al. Phase III randomized study of ribociclib and fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: MONALEESA-3. J Clin Oncol. 2018;36:2465–72.

    Article  CAS  PubMed  Google Scholar 

  72. Sledge GW Jr., Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35:2875–84.

    Article  CAS  PubMed  Google Scholar 

  73. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17:425–39.

    Article  CAS  PubMed  Google Scholar 

  74. Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer cell. 2018;34:9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell. 2015;163:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Patel H, Abduljabbar R, Lai CF, Periyasamy M, Harrod A, Gemma C, et al. Expression of CDK7, Cyclin H, and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor-positive breast cancer. Clin Cancer Res. 2016;22:5929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Papadopoulos KP, Sharma M, Hamilton EP, Richardson DL, Hodgson G, Zhou L, et al. First-in-human phase I study of SY-5609, an oral, potent, and selective noncovalent CDK7 inhibitor, in adult patients with select advanced solid tumors. J Clin Oncol. 2020;38:TPS3662.

    Article  Google Scholar 

  78. Wang Y, Zhang Z, Mi X, Li M, Huang D, Song T, et al. Elevation of effective p53 expression sensitizes wild-type p53 breast cancer cells to CDK7 inhibitor THZ1. Cell Commun Signal. 2022;20:96.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Thomasova D, Bruns HA, Kretschmer V, Ebrahim M, Romoli S, Liapis H, et al. Murine double minute-2 prevents p53-overactivation-related cell death (podoptosis) of podocytes. J Am Soc Nephrol. 2015;26:1513–23.

    Article  CAS  PubMed  Google Scholar 

  80. Endo S, Yamato K, Hirai S, Moriwaki T, Fukuda K, Suzuki H, et al. Potent in vitro and in vivo antitumor effects of MDM2 inhibitor nutlin-3 in gastric cancer cells. Cancer Sci. 2011;102:605–13.

    Article  CAS  PubMed  Google Scholar 

  81. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–8.

    Article  CAS  PubMed  Google Scholar 

  82. Kalan S, Amat R, Schachter MM, Kwiatkowski N, Abraham BJ, Liang Y, et al. Activation of the p53 transcriptional program sensitizes cancer cells to Cdk7 inhibitors. Cell Rep. 2017;21:467–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aoubala M, Murray-Zmijewski F, Khoury MP, Fernandes K, Perrier S, Bernard H, et al. p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death Differ. 2011;18:248–58.

    Article  CAS  PubMed  Google Scholar 

  84. Clemons M, Danson S, Howell A. Tamoxifen (“Nolvadex”): a review. Cancer Treat Rev. 2002;28:165–80.

    Article  CAS  PubMed  Google Scholar 

  85. Nathan MR, Schmid P. A review of fulvestrant in breast cancer. Oncol Ther. 2017;5:17–29.

    Article  PubMed  Google Scholar 

  86. Attia YM, Shouman SA, Salama SA, Ivan C, Elsayed AM, Amero P, et al. Blockade of CDK7 reverses endocrine therapy resistance in breast cancer. Int J Mol Sci. 2020;21:2974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015;12:573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. André F, Ciruelos EM, Juric D, Loibl S, Campone M, Mayer IA, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol. 2021;32:208–17.

    Article  PubMed  Google Scholar 

  89. Harrod A, Fulton J, Nguyen VTM, Periyasamy M, Ramos-Garcia L, Lai CF, et al. Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer. Oncogene. 2017;36:2286–96.

    Article  CAS  PubMed  Google Scholar 

  90. Patel HK, Tao N, Lee KM, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, et al. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014;20:1757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, et al. The genomic landscape of endocrine-resistant advanced breast cancers. Cancer Cell. 2018;34:427–38.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45:1446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell. 2018;33:173–86.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cook MM, Al Rabadi L, Kaempf AJ, Saraceni MM, Savin MA, Mitri ZI. Everolimus plus exemestane treatment in patients with metastatic hormone receptor-positive breast cancer previously treated with CDK4/6 inhibitor therapy. Oncologist. 2021;26:101–6.

    Article  CAS  Google Scholar 

  96. Rugo HS, Lerebours F, Ciruelos E, Drullinsky P, Ruiz-Borrego M, Neven P, et al. Alpelisib plus fulvestrant in PIK3CA-mutated, hormone receptor-positive advanced breast cancer after a CDK4/6 inhibitor (BYLieve): one cohort of a phase 2, multicentre, open-label, non-comparative study. Lancet Oncol. 2021;22:489–98.

    Article  CAS  PubMed  Google Scholar 

  97. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang S, Huang S, Zhang H, Li D, Li X, Cheng Y, et al. Histo- and clinico-pathological analysis of a large series of triple-negative breast cancer in a single center in China: Evidences on necessity of histological subtyping and grading. Chin J Cancer Res. 2020;32:580–95.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA. Subtyping of triple-negative breast cancer: implications for therapy. Cancer. 2015;121:8–16.

    Article  PubMed  Google Scholar 

  100. Asleh K, Riaz N, Nielsen TO. Heterogeneity of triple negative breast cancer: current advances in subtyping and treatment implications. J Exp Clin Cancer Res. 2022;41:265.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47.

    Article  CAS  PubMed  Google Scholar 

  102. Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol Cell. 2015;58:362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell. 2014;159:1126–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD, Cook RS, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232–45.

    Article  CAS  PubMed  Google Scholar 

  106. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. MYC deregulation in primary human cancers. Genes (Basel). 2017;8:151.

    Article  PubMed  Google Scholar 

  107. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209:679–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Christensen CL, Kwiatkowski N, Abraham BJ, Carretero J, Al-Shahrour F, Zhang T, et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell. 2014;26:909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tang L, Jin J, Xu K, Wang X, Tang J, Guan X. SOX9 interacts with FOXC1 to activate MYC and regulate CDK7 inhibitor sensitivity in triple-negative breast cancer. Oncogenesis. 2020;9:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  111. Loibl S, Gianni L. HER2-positive breast cancer. Lancet (Lond, Engl). 2017;389:2415–29.

    Article  CAS  Google Scholar 

  112. Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet (Lond, Engl). 2017;389:1195–205.

    Article  CAS  Google Scholar 

  113. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017;377:122–31.

    Article  Google Scholar 

  114. Xu B, Yan M, Ma F, Hu X, Feng J, Ouyang Q, et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22:351–60.

    Article  CAS  PubMed  Google Scholar 

  115. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl J Med. 2011;365:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 Inhibitors. Cancer cell. 2016;29:255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sun B, Mason S, Wilson RC, Hazard SE, Wang Y, Fang R, et al. Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers. Oncogene. 2020;39:50–63.

    Article  CAS  PubMed  Google Scholar 

  118. Akoulitchev S, Chuikov S, Reinberg D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature. 2000;407:102–6.

    Article  CAS  PubMed  Google Scholar 

  119. Fant CB, Taatjes DJ. Regulatory functions of the mediator kinases CDK8 and CDK19. Transcription. 2019;10:76–90.

    Article  PubMed  Google Scholar 

Download references

Funding

Zhaoyang project, Guangdong Provincial Hospital of Chinese Medicine

Author information

Authors and Affiliations

Authors

Contributions

Xue Song: Conceptualization and writing. Chen Fang: Revision. Yang Sun, Xiaojie Lin and Yan Dai: Resources and literature search. Chang Qiu: Picture drawing. Rui Xu: Reviewing and Editing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rui Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Fang, C., Dai, Y. et al. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 130, 1239–1248 (2024). https://doi.org/10.1038/s41416-024-02589-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-024-02589-8

Search

Quick links