Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Enhanced antitumour response of gold nanostar-mediated photothermal therapy in combination with immunotherapy in a mouse model of colon carcinoma

Abstract

Objectives

This study investigated the potential of combining PTT with dendritic cell (DC)-based immunotherapy and anti-PD-L1 immune checkpoint blockade (ICB) therapy against colorectal cancer and elucidated the underlying mechanisms.

Methods

The CT26 tumour-bearing mice were divided into seven treatment groups: control, atezolizumab (A), dendritic cells (DC), pAuNSs-mediated PTT (PTT), PTT combined with atezolizumab (PTT + A), PTT combined with dendritic cells (PTT + DC), and PTT combined with dendritic cells and atezolizumab (PTT + DC + A). Therapeutic efficacy was monitored.

Results

PTT upregulated most immune cell membrane receptor genes, including PD-L1, and downregulated genes associated with antigen presentation and T cell activation. Although the PTT + A and PTT + DC treatments showed partial tumour growth retardation, the combination of PTT with DCs and atezolizumab (PTT + DC + A) exhibited the most significant antitumour effect, with a complete remission rate of 50% and prolonged survival. On day 14, tumour samples from non-responsive mice revealed insufficient recruitment of T cells as the reason for uncured tumours. Notably, mice cured with PTT + DC and PTT + DC + A treatments showed no detectable lung nodules.

Conclusion

This study demonstrated that the combination of PTT with DC-based immunotherapy and atezolizumab effectively overcomes the non-sensitive nature of CT26 tumours. These findings highlight the potential of this combination approach for colorectal cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The physicochemical and biological characteristics of unlabeled and radiolabeled pAuNSs.
Fig. 2: The next generation sequence analysis (NGS) after PTT.
Fig. 3: The in vitro and in vivo properties of 111In-atezolizumab.
Fig. 4: The effectiveness of monotherapy and combination therapy.
Fig. 5: The immunological analyses of tumors and spleens in each group of mice.

Similar content being viewed by others

Data availability

All data generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Hoydahl O, Edna TH, Xanthoulis A, Lydersen S, Endreseth BH. Long-term trends in colorectal cancer: incidence, localization, and presentation. BMC Cancer. 2020;20:1077. https://doi.org/10.1186/s12885-020-07582-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malietzis G, Lee GH, Jenkins JT, Bernardo D, Moorghen M, Knight SC, et al. Prognostic value of the tumour-infiltrating dendritic cells in colorectal cancer: a systematic review. Cell Commun Adhes. 2015;22:9–14. https://doi.org/10.3109/15419061.2015.1036859

    Article  CAS  PubMed  Google Scholar 

  3. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75:163–89. https://doi.org/10.1189/jlb.0603252

    Article  CAS  PubMed  Google Scholar 

  4. Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, et al. Trial watch: dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017;6:e1328341. https://doi.org/10.1080/2162402X.2017.1328341

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gessani S, Belardelli F. Immune dysfunctions and immunotherapy in colorectal cancer: the role of dendritic cells. Cancers. 2019;11:1491. https://doi.org/10.3390/cancers11101491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77. https://doi.org/10.1038/nrc3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4:941–52. https://doi.org/10.1038/nri1498

    Article  CAS  PubMed  Google Scholar 

  8. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers. 2020;12:738. https://doi.org/10.3390/cancers12030738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yaghoubi N, Soltani A, Ghazvini K, Hassanian SM, Hashemy SI. PD-1/ PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother. 2019;110:312–8. https://doi.org/10.1016/j.biopha.2018.11.105

    Article  CAS  PubMed  Google Scholar 

  10. Tintelnot J, Stein A. Immunotherapy in colorectal cancer: available clinical evidence, challenges and novel approaches. World J Gastroenterol. 2019;25:3920–8. https://doi.org/10.3748/wjg.v25.i29.3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen R, Rousseau B, Vidal J, Colle R, Diaz LA Jr, Andre T. Immune checkpoint inhibition in colorectal cancer: microsatellite instability and beyond. Target Oncol. 2020;15:11–24. https://doi.org/10.1007/s11523-019-00690-0

    Article  PubMed  Google Scholar 

  12. Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun. 2020;11:4835. https://doi.org/10.1038/s41467-020-18570-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang L, Li Y, Du Y, Zhang Y, Wang X, Ding Y, et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat Commun. 2019;10:4871. https://doi.org/10.1038/s41467-019-12771-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang TY, Huang GL, Zhang CY, Zhuang BW, Liu BX, Su LY, et al. Supramolecular photothermal nanomedicine mediated distant tumor inhibition via PD-1 and TIM-3 blockage. Front Chem. 2020;8:1. https://doi.org/10.3389/fchem.2020.00001

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen CC, Chang DY, Li JJ, Chan HW, Chen JT, Chang CH, et al. Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J Mater Chem B. 2020;8:65–77. https://doi.org/10.1039/c9tb02194a

    Article  CAS  PubMed  Google Scholar 

  16. Aboeleneen SB, Scully MA, Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for photothermal cancer therapy. Nano Converg. 2022;9:37. https://doi.org/10.1186/s40580-022-00328-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuo WY, Lin JJ, Hsu HJ, Chen HS, Yang AS, Wu CY. Noninvasive assessment of characteristics of novel anti-HER2 antibodies by molecular imaging in a human gastric cancer xenograft-bearing mouse model. Sci Rep. 2018;8:13735. https://doi.org/10.1038/s41598-018-32094-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin YY, Chang CH, Li JJ, Stabin MG, Chang YJ, Chen LC, et al. Pharmacokinetics and dosimetry of (111)In/(188)Re-labeled PEGylated liposomal drugs in two colon carcinoma-bearing mouse models. Cancer Biother Radiopharm. 2011;26:373–80. https://doi.org/10.1089/cbr.2010.0906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen CC, Li JJ, Guo NH, Chang DY, Wang CY, Chen JT, et al. Evaluation of the biological behavior of a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP) in a CT-26 tumor/ascites mouse model after intravenous/intraperitoneal administration. Int J Mol Sci. 2019;20:217. https://doi.org/10.3390/ijms20010217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsang Y-W, Huang C-C, Yang K-L, Chi M-S, Chiang H-C, Wang Y-S, et al. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy. BMC Cancer. 2015;15:708. https://doi.org/10.1186/s12885-015-1690-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo R, Wang S, Zhao L, Zong Q, Li T, Ling G, et al. Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials. 2022;282:121425. https://doi.org/10.1016/j.biomaterials.2022.121425

    Article  CAS  PubMed  Google Scholar 

  22. Chatterjee H, Rahman DS, Sengupta M, Ghosh SK. Gold nanostars in plasmonic photothermal therapy: the role of tip heads in the thermoplasmonic landscape. J Phys Chem C. 2018;122:13082–94. https://doi.org/10.1021/acs.jpcc.8b00388

    Article  CAS  Google Scholar 

  23. Fabris L. Gold nanostars in biology and medicine: understanding physicochemical properties to broaden applicability. J Phys Chem C. 2020;124:26540–53. https://doi.org/10.1021/acs.jpcc.0c08460

    Article  CAS  Google Scholar 

  24. Lin MY, Hsieh HH, Chen JC, Chen CL, Sheu NC, Huang WS, et al. Brachytherapy approach using (177)Lu conjugated gold nanostars and evaluation of biodistribution, tumor retention, dosimetry and therapeutic efficacy in head and neck tumor model. Pharmaceutics. 2021;13:1903. https://doi.org/10.3390/pharmaceutics13111903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mukhopadhaya A, Mendecki J, Dong X, Liu L, Kalnicki S, Garg M, et al. Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity. Cancer Res. 2007;67:7798–806. https://doi.org/10.1158/0008-5472.CAN-07-0203

    Article  CAS  PubMed  Google Scholar 

  26. Kugelberg E. Infection: Interferons suppress antibody responses. Nat Rev Immunol. 2016;16:720–1. https://doi.org/10.1038/nri.2016.128

    Article  CAS  PubMed  Google Scholar 

  27. Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, et al. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13:3676. https://doi.org/10.1038/s41467-022-31218-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu C, Jiang Y, Han Y, Pu K, Zhang R. A polymer multicellular nanoengager for synergistic NIR-II photothermal immunotherapy. Adv Mater. 2021;33:e2008061. https://doi.org/10.1002/adma.202008061

    Article  CAS  PubMed  Google Scholar 

  29. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9. https://doi.org/10.1200/JCO.2017.76.9901

    Article  CAS  PubMed  Google Scholar 

  30. Ho WW, Gomes-Santos IL, Aoki S, Datta M, Kawaguchi K, Talele NP, et al. Dendritic cell paucity in mismatch repair-proficient colorectal cancer liver metastases limits immune checkpoint blockade efficacy. Proc Natl Acad Sci USA. 2021;118:e2105323118. https://doi.org/10.1073/pnas.2105323118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castle JC, Loewer M, Boegel S, de Graaf J, Bender C, Tadmor AD, et al. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma. BMC Genomics. 2014;15:190. https://doi.org/10.1186/1471-2164-15-190

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou Z, Jiang N, Chen J, Zheng C, Guo Y, Ye R, et al. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J Nanobiotechnol. 2021;19:375. https://doi.org/10.1186/s12951-021-01124-8

    Article  CAS  Google Scholar 

  33. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Masugi Y, Nishihara R, Yang J, Mima K, da Silva A, Shi Y, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2017;66:1463–73. https://doi.org/10.1136/gutjnl-2016-311421

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Maccarini P, Palmer GM, Etienne W, Zhao Y, Lee CT, et al. Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Sci Rep. 2017;7:8606. https://doi.org/10.1038/s41598-017-09116-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh SA, Wu DC, Cheung J, Navarro A, Xiong H, Cubas R, et al. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat Cancer. 2020;1:681–91. https://doi.org/10.1038/s43018-020-0075-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical supports provided by Imaging and Flow cytometry Core Facility of National Yang Ming Chiao Tung University (Taipei, Taiwan) and Laboratory Animal Center, Chang Gung Memorial Hospital (Linkou, Taiwan).

Funding

The authors thank the financial support from National Sciences and Technology Council, Taiwan (MOST 109-2314-B-010-066, MOST 111-2623-E-A49-004-NU, and NSTC 112-2623-E-A49-006-NU).

Author information

Authors and Affiliations

Authors

Contributions

H-HH: writing—original draft, investigation, methodology, software, formal analysis, data curation, visualisation; C-LC: resources, funding acquisition, project administration; H-WC: investigation, methodology; K-HC: supervision; C-YW: writing—review and editing, funding acquisition, supervision, validation, conceptualisation.

Corresponding author

Correspondence to Chun-Yi Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Animal studies were approved by the Institutional Animal Care and Use Committee, National Yang Ming Chiao Tung University, Taipei, Taiwan (Nos. 1100429 and 1101009).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, HH., Chen, CL., Chan, HW. et al. Enhanced antitumour response of gold nanostar-mediated photothermal therapy in combination with immunotherapy in a mouse model of colon carcinoma. Br J Cancer 130, 406–416 (2024). https://doi.org/10.1038/s41416-023-02537-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02537-y

Search

Quick links