Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PROTAC-mediated CDK degradation differentially impacts cancer cell cycles due to heterogeneity in kinase dependencies

Abstract

Background

Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibition yields differential cellular responses in multiple tumor models due to redundancy in cell cycle. We investigate whether the differential requirements of CDKs in multiple cell lines function as determinant of response to pharmacological agents that target these kinases.

Methods

We utilized proteolysis-targeted chimeras (PROTACs) that are conjugated with palbociclib (Palbo-PROTAC) to degrade both CDK4 and CDK6. FN-POM was synthesized by chemically conjugating pomalidomide moiety with a multi-kinase inhibitor, FN-1501. Patient derived PDAC organoids and PDX model were utilized to investigate the effect of FN-POM in combination with palbociclib.

Results

Palbo-PROTAC mediates differential impact on cell cycle in different tumor models, indicating that the dependencies to CDK4 and 6 kinases are heterogenous. Cyclin E overexpression uncouples cell cycle from CDK4/6 and drives resistance to palbo-PROTAC. Elevated expression of P16INK4A antagonizes PROTAC-mediated degradation of CDK4 and 6. FN-POM degrades cyclin E and CDK2 and inhibits cell cycle progression in P16INK4A-high tumor models. Combination of palbociclib and FN-POM cooperatively inhibit tumor cell proliferation via RB activation.

Conclusion

Resistance to CDK4/6 inhibition could be overcome by pharmacologically limiting Cyclin E/CDK2 complex and proves to be a potential therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular response to different palbociclib-PROTACS.
Fig. 2: Differential effects of BSJ-02-162 in a panel of cell lines.
Fig. 3: Resistance to BSJ-02-162 via CCNE1 and CDKN2A overexpression.
Fig. 4: Cellular response to FN-POM in a panel of cell lines.
Fig. 5: Cellular response to FN-POM in combination with palbociclib.

Similar content being viewed by others

Data availability

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study. The synthesis scheme and the structural characterization of the new chemical molecule are available in this published paper and its supplementary information.

References

  1. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23:74–88.

    Article  CAS  PubMed  Google Scholar 

  2. Sherr CJ. Mammalian G1 cyclins. Cell. 1993;73:1059–65.

    Article  CAS  PubMed  Google Scholar 

  3. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article  CAS  PubMed  Google Scholar 

  4. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol. 1995;15:4215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: towards the next phase. Cell Cycle. 2018;17:1871–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simoneschi D, Rona G, Zhou N, Jeong YT, Jiang S, Milletti G, et al. CRL4(AMBRA1) is a master regulator of D-type cyclins. Nature. 2021;592:789–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaikovsky AC, Li C, Jeng EE, Loebell S, Lee MC, Murray CW, et al. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature. 2021;592:794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res. 2022;24:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumarasamy V, Nambiar R, Wang J, Rosenheck H, Witkiewicz AK, Knudsen ES. RB loss determines selective resistance and novel vulnerabilities in ER-positive breast cancer models. Oncogene. 2022;41:3524–38.

    Article  CAS  PubMed  Google Scholar 

  11. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al. Genomic characterization of metastatic breast cancers. Nature. 2019;569:560–4.

    Article  CAS  PubMed  Google Scholar 

  12. Asghar US, Kanani R, Roylance R, Mittnacht S. Systematic Review of Molecular Biomarkers Predictive of Resistance to CDK4/6 Inhibition in Metastatic Breast Cancer. JCO Precis Oncol. 2022;6:e2100002.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129–38.

    Article  CAS  PubMed  Google Scholar 

  14. Knudsen ES, Kumarasamy V, Ruiz A, Sivinski J, Chung S, Grant A, et al. Cell cycle plasticity driven by MTOR signaling: integral resistance to CDK4/6 inhibition in patient-derived models of pancreatic cancer. Oncogene. 2019;38:3355–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumarasamy V, Vail P, Nambiar R, Witkiewicz AK, Knudsen ES. Functional Determinants of Cell Cycle Plasticity and Sensitivity to CDK4/6 Inhibition. Cancer Res. 2021;81:1347–60.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Jiang B, Guo J, Shao H, Del Priore IS, Chang Q, et al. INK4 Tumor Suppressor Proteins Mediate Resistance to CDK4/6 Kinase Inhibitors. Cancer Discov. 2022;12:356–71.

    Article  CAS  PubMed  Google Scholar 

  17. Guiley KZ, Stevenson JW, Lou K, Barkovich KJ, Kumarasamy V, Wijeratne TU, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366:eaaw2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pack LR, Daigh LH, Chung M, Meyer T. Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2. Nat Commun. 2021;12:3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Placke T, Faber K, Nonami A, Putwain SL, Salih HR, Heidel FH, et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood. 2014;124:13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alvarez-Fernandez M, Malumbres M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell. 2020;37:514–29.

    Article  CAS  PubMed  Google Scholar 

  21. Wu X, Yang X, Xiong Y, Li R, Ito T, Ahmed TA, et al. Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders. Nat Cancer. 2021;2:429–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knudsen ES, Kumarasamy V, Nambiar R, Pearson JD, Vail P, Rosenheck H, et al. CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Rep. 2022;38:110448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lai AC, Crews CM. Induced protein degradation: an emerging drug discovery paradigm. Nat Rev Drug Discov. 2017;16:101–14.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang B, Wang ES, Donovan KA, Liang Y, Fischer ES, Zhang T, et al. Development of Dual and Selective Degraders of Cyclin-Dependent Kinases 4 and 6. Angew Chem Int Ed Engl. 2019;58:6321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao B, Burgess K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun (Camb). 2019;55:2704–7.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Zhi Y, Jin Q, Lu S, Lin G, Yuan H, et al. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)p henyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia. J Med Chem. 2018;61:1499–518.

    Article  CAS  PubMed  Google Scholar 

  27. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu CC, Miller K, et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature. 2016;535:252–7.

    Article  CAS  PubMed  Google Scholar 

  28. Gao S, Wang S, Song Y. Novel immunomodulatory drugs and neo-substrates. Biomark Res. 2020;8:2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sievers QL, Petzold G, Bunker RD, Renneville A, Slabicki M, Liddicoat BJ, et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science. 2018;362:eaat0572.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–6.

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, et al. Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell. 2018;34:893–905.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guarducci C, Bonechi M, Benelli M, Biagioni C, Boccalini G, Romagnoli D, et al. Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. NPJ Breast Cancer. 2018;4:38.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang C, Li Z, Bhatt T, Dickler M, Giri D, Scaltriti M, et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene. 2017;36:2255–64.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Zou W, Zhang J, Zhang Y, Xu Q, Li S, et al. Mechanisms of CDK4/6 Inhibitor Resistance in Luminal Breast Cancer. Front Pharmacol. 2020;11:580251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Golomb L, Meyerson M. Functional Genomic Analysis of CDK4 and CDK6 Gene Dependency across Human Cancer Cell Lines. Cancer Res. 2022;82:2171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knudsen ES, Kumarasamy V, Chung S, Ruiz A, Vail P, Tzetzo S, et al. Targeting dual signalling pathways in concert with immune checkpoints for the treatment of pancreatic cancer. Gut. 2021;70:127–38.

    Article  CAS  PubMed  Google Scholar 

  37. George MA, Qureshi S, Omene C, Toppmeyer DL, Ganesan S. Clinical and Pharmacologic Differences of CDK4/6 Inhibitors in Breast Cancer. Front Oncol. 2021;11:693104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H, et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem. 2005;48:2388–406.

    Article  CAS  PubMed  Google Scholar 

  39. Konstantinidou M, Li J, Zhang B, Wang Z, Shaabani S, Ter Brake F, et al. PROTACs- a game-changing technology. Expert Opin Drug Discov. 2019;14:1255–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, et al. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther. 2019;4:64.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fassl A, Brain C, Abu-Remaileh M, Stukan I, Butter D, Stepien P, et al. Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Sci Adv. 2020;6:eabb2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Freeman-Cook K, Hoffman RL, Miller N, Almaden J, Chionis J, Zhang Q, et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell. 2021;39:1404–21.e11.

    Article  CAS  PubMed  Google Scholar 

  43. Schaefer IM, Hemming ML, Lundberg MZ, Serrata MP, Goldaracena I, Liu N, et al. Concurrent inhibition of CDK2 adds to the anti-tumour activity of CDK4/6 inhibition in GIST. Br J Cancer. 2022;127:2072–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Teng M, Jiang J, He Z, Kwiatkowski NP, Donovan KA, Mills CE, et al. Development of CDK2 and CDK5 Dual Degrader TMX-2172. Angew Chem Int Ed Engl. 2020;59:13865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hati S, Zallocchi M, Hazlitt R, Li Y, Vijayakumar S, Min J, et al. AZD5438-PROTAC: A selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem. 2021;226:113849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thank all members of the laboratory group and colleagues in the discussion and preparation of the paper. Dr Nathanael S. Gray (Stanford) kindly provided the PROTACS, BSJ-02-162 and BSJ-03-201. Dr Jianxin Wang (Roswell Park Cancer Center) generated the Oncoprint for the cell lines.

Funding

The research was supported by a grant to AKW and ESK from National Cancer Institute (CA247362 and CA267467).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: VK, SMR, KB, ESK, and AKW. Acquisition of data: VK, ZG, BJ, BZ. Analysis and interpretation of data: VK, SMR, ESK, and AKW. Study supervision: ESK and AKW.

Corresponding author

Correspondence to Erik S. Knudsen.

Ethics declarations

Competing interests

Dr ESK and Dr AKW have received research funding from Eli Lilly, Novartis and Pfizer over the last 5 years. There is no current research support from these entities and the study was written in the absence of input from any pharmaceutical company.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumarasamy, V., Gao, Z., Zhao, B. et al. PROTAC-mediated CDK degradation differentially impacts cancer cell cycles due to heterogeneity in kinase dependencies. Br J Cancer 129, 1238–1250 (2023). https://doi.org/10.1038/s41416-023-02399-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02399-4

Search

Quick links