Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Immune microenvironment and lymph node yield in colorectal cancer

Abstract

Background

Lymph node (LN) harvesting is associated with outcomes in colonic cancer. We sought to interrogate whether a distinctive immune milieu of the primary tumour is associated with LN yield.

Methods

A total of 926 treatment-naive patients with colorectal adenocarcinoma with more than 12 LNs (LN-high) were compared with patients with 12 or fewer LNs (LN-low). We performed immunohistochemistry and quantification on tissue microarrays for HLA class I/II proteins, beta-2-microglobulin (B2MG), CD8, CD163, LAG3, PD-L1, FoxP3, and BRAF V600E.

Results

The LN-high group was comprised of younger patients, longer resections, larger tumours, right-sided location, and tumours with deficient mismatch repair (dMMR). The tumour microenvironment showed higher CD8+ cells infiltration and B2MG expression on tumour cells in the LN-high group compared to the LN-low group. The estimated mean disease-specific survival was higher in the LN-high group than LN-low group. On multivariate analysis for prognosis, LN yield, CD8+ cells, extramural venous invasion, perineural invasion, and AJCC stage were independent prognostic factors.

Conclusion

Our findings corroborate that higher LN yield is associated with a survival benefit. LN yield is associated with an immune high microenvironment, suggesting that tumour immune milieu influences the LN yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation between number of positive LN and LN yield.
Fig. 2: Comparison between immune-high and immune-low tumours.
Fig. 3: The disease-specific survival according to the LN positivity (Kaplan–Meier method).
Fig. 4: The disease-specific survival according to the stage and immune profile (Kaplan–Meier method).

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available to maintain patient confidentiality, but de-identified data are available from the corresponding author upon reasonable request.

References

  1. Fielding LP, Arsenault PA, Chapuis PH, Dent O, Gathright B, Hardcastle JD, et al. Clinicopathological staging for colorectal cancer: an International Documentation System (IDS) and an International Comprehensive Anatomical Terminology (ICAT). J Gastroenterol Hepatol. 1991;6:325–44.

    Article  CAS  PubMed  Google Scholar 

  2. Scott KW, Grace RH. Detection of lymph node metastases in colorectal carcinoma before and after fat clearance. Br J Surg. 1989;76:1165–7.

    Article  CAS  PubMed  Google Scholar 

  3. Minhas JS, Igali L. Lymph node correlations and thresholds in colorectal cancer specimens. Int J Surg Pathol. 2011;19:462–8.

    Article  PubMed  Google Scholar 

  4. Nelson H, Petrelli N, Carlin A, Couture J, Fleshman J, Guillem J, et al. Guidelines 2000 for colon and rectal cancer surgery. J Natl Cancer Inst. 2001;93:583–96.

    Article  CAS  PubMed  Google Scholar 

  5. Cianchi F, Palomba A, Boddi V, Messerini L, Pucciani F, Perigli G, et al. Lymph node recovery from colorectal tumor specimens: recommendation for a minimum number of lymph nodes to be examined. World J Surg. 2002;26:384–9.

    Article  PubMed  Google Scholar 

  6. Cserni G, Vinh-Hung V, Burzykowski T. Is there a minimum number of lymph nodes that should be histologically assessed for a reliable nodal staging of T3N0M0 colorectal carcinomas? J Surg Oncol. 2002;81:63–9.

    Article  PubMed  Google Scholar 

  7. Goldstein NS. Lymph node recoveries from 2427 pT3 colorectal resection specimens spanning 45 years: recommendations for a minimum number of recovered lymph nodes based on predictive probabilities. Am J Surg Pathol. 2002;26:179–89.

    Article  PubMed  Google Scholar 

  8. Trepanier M, Erkan A, Kouyoumdjian A, Nassif G, Albert M, Monson J, et al. Examining the relationship between lymph node harvest and survival in patients undergoing colectomy for colon adenocarcinoma. Surgery. 2019;166:639–47.

    Article  PubMed  Google Scholar 

  9. Sarli L, Bader G, Iusco D, Salvemini C, Mauro DD, Mazzeo A, et al. Number of lymph nodes examined and prognosis of TNM stage II colorectal cancer. Eur J Cancer. 2005;41:272–9.

    Article  PubMed  Google Scholar 

  10. Chang GJ, Rodriguez-Bigas MA, Skibber JM, Moyer VA. Lymph node evaluation and survival after curative resection of colon cancer: systematic review. J Natl Cancer Inst. 2007;99:433–41.

    Article  PubMed  Google Scholar 

  11. Johnson PM, Porter GA, Ricciardi R, Baxter NN. Increasing negative lymph node count is independently associated with improved long-term survival in stage IIIB and IIIC colon cancer. J Clin Oncol. 2006;24:3570–5.

    Article  PubMed  Google Scholar 

  12. Tekkis PP, Smith JJ, Heriot AG, Darzi AW, Thompson MR, Stamatakis JD, et al. A national study on lymph node retrieval in resectional surgery for colorectal cancer. Dis Colon Rectum. 2006;49:1673–83.

    Article  PubMed  Google Scholar 

  13. Stocchi L, Fazio VW, Lavery I, Hammel J. Individual surgeon, pathologist, and other factors affecting lymph node harvest in stage II colon carcinoma. is a minimum of 12 examined lymph nodes sufficient? Ann Surg Oncol. 2011;18:405–12.

    Article  PubMed  Google Scholar 

  14. Nathan H, Shore AD, Anders RA, Wick EC, Gearhart SL, Pawlik TM. Variation in lymph node assessment after colon cancer resection: patient, surgeon, pathologist, or hospital? J Gastrointest Surg. 2011;15:471–9.

    Article  PubMed  Google Scholar 

  15. Wood P, Peirce C, Mulsow J. Non-surgical factors influencing lymph node yield in colon cancer. World J Gastrointest Oncol. 2016;8:466–73.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baxter NN, Ricciardi R, Simunovic M, Urbach DR, Virnig BA. An evaluation of the relationship between lymph node number and staging in pT3 colon cancer using population-based data. Dis Colon Rectum. 2010;53:65–70.

    Article  PubMed  Google Scholar 

  17. Chou JF, Row D, Gonen M, Liu YH, Schrag D, Weiser MR. Clinical and pathologic factors that predict lymph node yield from surgical specimens in colorectal cancer: a population-based study. Cancer. 2010;116:2560–70.

    Article  PubMed  Google Scholar 

  18. Nash GM, Row D, Weiss A, Shia J, Guillem JG, Paty PB, et al. A predictive model for lymph node yield in colon cancer resection specimens. Ann Surg. 2011;253:318–22.

    Article  PubMed  Google Scholar 

  19. Samdani T, Schultheis M, Stadler Z, Shia J, Fancher T, Misholy J, et al. Lymph node yield after colectomy for cancer: is absence of mismatch repair a factor? Dis Colon Rectum. 2015;58:288–93.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim YW, Jan KM, Jung DH, Cho MY, Kim NK. Histological inflammatory cell infiltration is associated with the number of lymph nodes retrieved in colorectal cancer. Anticancer Res. 2013;33:5143–50.

    PubMed  Google Scholar 

  21. Markl B, Schaller T, Kokot Y, Endhardt K, Kretsinger H, Hirschbuhl K, et al. Lymph node size as a simple prognostic factor in node negative colon cancer and an alternative thesis to stage migration. Am J Surg. 2016;212:775–80.

    Article  PubMed  Google Scholar 

  22. Belt EJ, te Velde EA, Krijgsman O, Brosens RP, Tijssen M, van Essen HF, et al. High lymph node yield is related to microsatellite instability in colon cancer. Ann Surg Oncol. 2012;19:1222–30.

    Article  PubMed  Google Scholar 

  23. Lal N, Chan DKH, Ng ME, Vermeulen L, Buczacki SJA. Primary tumour immune response and lymph node yields in colon cancer. Br J Cancer. 2022;126:1178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neyaz A, Pankaj A, Crabbe A, Rickelt S, Leijssen L, Dinaux A, et al. Correlation of clinical, pathologic, and genetic parameters with intratumoral immune milieu in mucinous adenocarcinoma of the colon. Mod Pathol. 2022;35:1723–31.

    Article  CAS  PubMed  Google Scholar 

  25. Willaert W, Mareel M, Van De Putte D, Van Nieuwenhove Y, Pattyn P, Ceelen W. Lymphatic spread, nodal count and the extent of lymphadenectomy in cancer of the colon. Cancer Treat Rev. 2014;40:405–13.

    Article  PubMed  Google Scholar 

  26. Del Paggio JC, Nanji S, Wei X, MacDonald PH, Booth CM. Lymph node evaluation for colon cancer in routine clinical practice: a population-based study. Curr Oncol. 2017;24:e35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Douaiher J, Hussain T, Langenfeld SJ. Predictors of adequate lymph node harvest during colectomy for colon cancer. Am J Surg. 2019;218:113–8.

    Article  PubMed  Google Scholar 

  28. Johnson PM, Malatjalian D, Porter GA. Adequacy of nodal harvest in colorectal cancer: a consecutive cohort study. J Gastrointest Surg. 2002;6:883–88. discussion 9-90

    Article  PubMed  Google Scholar 

  29. Simoes P, Fernandes G, Costeira B, Machete M, Baptista C, NS D, et al. Lymph node yield in the pathological staging of resected nonmetastatic colon cancer: the more the better? Surg Oncol. 2022;43:101806.

    Article  PubMed  Google Scholar 

  30. Soreide K, Nedrebo BS, Soreide JA, Slewa A, Korner H. Lymph node harvest in colon cancer: influence of microsatellite instability and proximal tumor location. World J Surg. 2009;33:2695–703.

    Article  PubMed  Google Scholar 

  31. Wright FC, Law CH, Last L, Khalifa M, Arnaout A, Naseer Z, et al. Lymph node retrieval and assessment in stage II colorectal cancer: a population-based study. Ann Surg Oncol. 2003;10:903–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nedrebo BS, Soreide K, Nesbakken A, Eriksen MT, Soreide JA, Korner H, et al. Risk factors associated with poor lymph node harvest after colon cancer surgery in a national cohort. Colorectal Dis. 2013;15:e301–8.

    Article  CAS  PubMed  Google Scholar 

  33. West NP, Hohenberger W, Weber K, Perrakis A, Finan PJ, Quirke P. Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. J Clin Oncol. 2010;28:272–8.

    Article  PubMed  Google Scholar 

  34. Goldstein NS, Sanford W, Coffey M, Layfield LJ. Lymph node recovery from colorectal resection specimens removed for adenocarcinoma. Trends over time and a recommendation for a minimum number of lymph nodes to be recovered. Am J Clin Pathol. 1996;106:209–16.

    Article  CAS  PubMed  Google Scholar 

  35. Lorenzon L, La Torre M, Ziparo V, Montebelli F, Mercantini P, Balducci G, et al. Evidence based medicine and surgical approaches for colon cancer: evidences, benefits and limitations of the laparoscopic vs open resection. World J Gastroenterol. 2014;20:3680–92.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hong D, Tabet J, Anvari M. Laparoscopic vs. open resection for colorectal adenocarcinoma. Dis Colon Rectum. 2001;44:10–8; discussion 8–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kwak JM, Kim SH, Kim J, Son DN, Baek SJ, Cho JS. Robotic vs laparoscopic resection of rectal cancer: short-term outcomes of a case-control study. Dis Colon Rectum. 2011;54:151–6.

    Article  PubMed  Google Scholar 

  38. Eveno C, Nemeth J, Soliman H, Praz F, de The H, Valleur P, et al. Association between a high number of isolated lymph nodes in T1 to T4 N0M0 colorectal cancer and the microsatellite instability phenotype. Arch Surg. 2010;145:12–7.

    CAS  PubMed  Google Scholar 

  39. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009;27:5944–51.

    Article  CAS  PubMed  Google Scholar 

  40. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609–18.

    Article  CAS  PubMed  Google Scholar 

  41. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.

    Article  CAS  PubMed  Google Scholar 

  42. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883–6.

    Article  CAS  PubMed  Google Scholar 

  43. Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 2005;65:6418–24.

    Article  CAS  PubMed  Google Scholar 

  44. Kloor M, Michel S, Buckowitz B, Ruschoff J, Buttner R, Holinski-Feder E, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121:454–8.

    Article  CAS  PubMed  Google Scholar 

  45. Dierssen JW, de Miranda NF, Ferrone S, van Puijenbroek M, Cornelisse CJ, Fleuren GJ, et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer. 2007;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tikidzhieva A, Benner A, Michel S, Formentini A, Link KH, Dippold W, et al. Microsatellite instability and beta2-microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106:1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 2018;8:730–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171:1259.e11–71.

    Article  Google Scholar 

  49. Foo CC, Ku C, Wei R, Yip J, Tsang J, Chan TY, et al. How does lymph node yield affect survival outcomes of stage I and II colon cancer? World J Surg Oncol. 2020;18:22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Baxter NN, Kennedy EB, Bergsland E, Berlin J, George TJ, Gill S, et al. Adjuvant therapy for stage II colon cancer: ASCO guideline update. J Clin Oncol. 2022;40:892–910.

    Article  CAS  PubMed  Google Scholar 

  51. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eroglu Z, Zaretsky JM, Hu-Lieskovan S, Kim DW, Algazi A, Johnson DB, et al. High response rate to PD-1 blockade in desmoplastic melanomas. Nature. 2018;553:347–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parsons HM, Tuttle TM, Kuntz KM, Begun JW, McGovern PM, Virnig BA. Association between lymph node evaluation for colon cancer and node positivity over the past 20 years. JAMA. 2011;306:1089–97.

    Article  CAS  PubMed  Google Scholar 

  55. Bui L, Rempel E, Reeson D, Simunovic M. Lymph node counts, rates of positive lymph nodes, and patient survival for colon cancer surgery in Ontario, Canada: a population-based study. J Surg Oncol. 2006;93:439–45.

    Article  PubMed  Google Scholar 

  56. Moller P, Momburg F, Koretz K, Moldenhauer G, Herfarth C, Otto HF, et al. Influence of major histocompatibility complex class I and II antigens on survival in colorectal carcinoma. Cancer Res. 1991;51:729–36.

    CAS  PubMed  Google Scholar 

  57. Benevolo M, Mottolese M, Piperno G, Sperduti I, Cione A, Sibilio L, et al. HLA-A, -B, -C expression in colon carcinoma mimics that of the normal colonic mucosa and is prognostically relevant. Am J Surg Pathol. 2007;31:76–84.

    Article  PubMed  Google Scholar 

  58. Na HY, Park Y, Nam SK, Lee KS, Oh HK, Kim DW, et al. Expression of human leukocyte antigen class I and beta2-microglobulin in colorectal cancer and its prognostic impact. Cancer Sci. 2021;112:91–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

VD is partially funded by NIH grant.

Author information

Authors and Affiliations

Authors

Contributions

OY and VD performed study concept and design; AP, AN, YO, and SR performed development of methodology; CF, DT, DP, OY, and DB provided acquisition of data and revision of paper; SL, OY, and VD analysed and interpreted data; SL, OY, and VD performed writing the paper. All authors reviewed and approved the final paper.

Corresponding authors

Correspondence to Vikram Deshpande or Osman Yılmaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The analyses of the cohort were conducted in adherence of the Declaration of Helsinki. The study was approved by the hospital institutional review board (IRB; MGB no. 2017P61).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Pankaj, A., Neyaz, A. et al. Immune microenvironment and lymph node yield in colorectal cancer. Br J Cancer 129, 917–924 (2023). https://doi.org/10.1038/s41416-023-02372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02372-1

Search

Quick links