Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nicardipine is a putative EED inhibitor and has high selectivity and potency against chemoresistant prostate cancer in preclinical models

Abstract

Background

It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers.

Methods

A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa.

Results

Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts.

Conclusion

Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nicardipine selectively and potently inhibits chemoresistant PCa cells.
Fig. 2: Nicardipine is a putative EED inhibitor.
Fig. 3: Nicardipine targets noncanonical EZH2 survival signalling in chemoresistant PCa cells.
Fig. 4: RNA-seq analysis of potential target genes of nicardipine in C4-2B-TaxR cells.
Fig. 5: Nicardipine monotherapy inhibits the skeletal growth of chemoresistant PCa in male athymic nude mice.
Fig. 6: Nicardipine synergistically enhances the in vivo efficacy of docetaxel against the skeletal growth of C4-2 tumours in male athymic nude mice.

Similar content being viewed by others

Data availability

All raw data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12.

    Article  CAS  PubMed  Google Scholar 

  3. Kyriakopoulos CE, Chen YH, Carducci MA, Liu G, Jarrard DF, Hahn NM, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol. 2018;36:1080–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clarke NW, Ali A, Ingleby FC, Hoyle A, Amos CL, Attard G, et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol. 2019;30:1992–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gillessen S, Attard G, Beer TM, Beltran H, Bjartell A, Bossi A, et al. Management of patients with advanced prostate cancer: report of the Advanced Prostate Cancer Consensus Conference 2019. Eur Urol. 2020;77:508–47.

    Article  CAS  PubMed  Google Scholar 

  6. Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2019;17:479–505.

    Article  CAS  PubMed  Google Scholar 

  7. Quinn DI, Sandler HM, Horvath LG, Goldkorn A, Eastham JA. The evolution of chemotherapy for the treatment of prostate cancer. Ann Oncol. 2017;28:2658–69.

    Article  CAS  PubMed  Google Scholar 

  8. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

    Article  CAS  PubMed  Google Scholar 

  9. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  10. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov. 2017;16:531–43.

    Article  CAS  PubMed  Google Scholar 

  11. Moffat JG, Rudolph J, Bailey D. Phenotypic screening in cancer drug discovery – past, present and future. Nat Rev Drug Discov. 2014;13:588–602.

    Article  CAS  PubMed  Google Scholar 

  12. Moritz LE, Trievel RC. Structure, mechanism, and regulation of polycomb-repressive complex 2. J Biol Chem. 2018;293:13805–14.

    Article  CAS  PubMed  Google Scholar 

  13. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article  CAS  PubMed  Google Scholar 

  14. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin Cancer Res. 2011;17:2613–8.

    Article  CAS  PubMed  Google Scholar 

  16. Gan L, Xu M, Hua R, Tan C, Zhang J, Gong Y, et al. The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J Hematol Oncol. 2018;11:9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun C, Zhao C, Li S, Wang J, Zhou Q, Sun J, et al. EZH2 expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis. J Cancer. 2018;9:3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li X, Gera L, Zhang S, Chen Y, Lou L, Wilson LM, et al. Pharmacological inhibition of noncanonical EED-EZH2 signaling overcomes chemoresistance in prostate cancer. Theranostics. 2021;11:6873–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sorkin EM, Clissold SP. Nicardipine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy, in the treatment of angina pectoris, hypertension and related cardiovascular disorders. Drugs. 1987;33:296–345.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Wang X, Osunkoya AO, Iqbal S, Wang Y, Chen Z, et al. EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene. 2011;30:4941–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, et al. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther. 2013;12:1829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li L, Feng L, Shi M, Zeng J, Chen Z, Zhong L, et al. Split luciferase-based biosensors for characterizing EED binders. Anal Biochem. 2017;522:37–45.

    Article  CAS  PubMed  Google Scholar 

  23. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34.

    Article  PubMed  Google Scholar 

  24. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des. 2007;21:681–91.

    Article  CAS  PubMed  Google Scholar 

  25. Greenwood JR, Calkins D, Sullivan AP, Shelley JC. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des. 2010;24:591–604.

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pKa values. Proteins. 2005;61:704–21.

    Article  CAS  PubMed  Google Scholar 

  27. Roos K, Wu C, Damm W, Reboul M, Stevenson JM, Lu C, et al. OPLS3e: extending force field coverage for drug-like small molecules. J Chem Theory Comput. 2019;15:1863–74.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang S, Wang X, Iqbal S, Wang Y, Osunkoya AO, Chen Z, et al. Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. J Biol Chem. 2013;288:1469–79.

    Article  CAS  PubMed  Google Scholar 

  29. Comet I, Riising EM, Leblanc B, Helin K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer. 2016;16:803–10.

    Article  CAS  PubMed  Google Scholar 

  30. Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, et al. The murine polycomb group protein EED is required for global histone H3 lysine-27 methylation. Curr Biol. 2005;15:942–7.

    Article  CAS  PubMed  Google Scholar 

  31. Pasini D, Bracken AP, Jensen MR, Denchi EL, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23:4061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cook N, Chen J, Zhou J, Wu D. Embryonic ectoderm development (EED) as a novel target for cancer treatment. Curr Top Med Chem. 2021;21:2771–7.

    Article  CAS  PubMed  Google Scholar 

  33. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao X, Wu X. Polycomb-group proteins in the initiation and progression of cancer. J Genet Genomics. 2021;48:433–43.

    Article  CAS  PubMed  Google Scholar 

  35. Knutson SK, Kawano S, Minoshima Y, Warholic NM, Huang KC, Xiao Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther. 2014;13:842–54.

    Article  CAS  PubMed  Google Scholar 

  36. Julia E, Salles G. EZH2 inhibition by tazemetostat: mechanisms of action, safety and efficacy in relapsed/refractory follicular lymphoma. Future Oncol. 2021;17:2127–40. https://doi.org/10.2217/fon-2020-1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J Hematol Oncol. 2020;13:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li C, Wang Y, Gong Y, Zhang T, Huang J, Tan Z, et al. Finding an easy way to harmonize: a review of advances in clinical research and combination strategies of EZH2 inhibitors. Clin Epigenetics. 2021;13:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yap TA, Winter JN, Giulino-Roth L, Longley J, Lopez J, Michot JM, et al. Phase I study of the novel enhancer of zeste homolog 2 (EZH2) inhibitor GSK2816126 in patients with advanced hematologic and solid tumors. Clin Cancer Res. 2019;25:7331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. He Y, Selvaraju S, Curtin ML, Jakob CG, Zhu H, Comess KM, et al. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat Chem Biol. 2017;13:389–95.

    Article  CAS  PubMed  Google Scholar 

  41. Huang Y, Zhang J, Yu Z, Zhang H, Wang Y, Lingel A, et al. Discovery of first-in-class, potent, and orally bioavailable embryonic ectoderm development (EED) inhibitor with robust anticancer efficacy. J Med Chem. 2017;60:2215–26.

    Article  CAS  PubMed  Google Scholar 

  42. Li L, Zhang H, Zhang M, Zhao M, Feng L, Luo X, et al. Discovery and molecular basis of a diverse set of polycomb repressive complex 2 inhibitors recognition by EED. PLoS One. 2017;12:e0169855.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qi W, Zhao K, Gu J, Huang Y, Wang Y, Zhang H, et al. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED. Nat Chem Biol. 2017;13:381–8.

    Article  CAS  PubMed  Google Scholar 

  44. Rej RK, Wang C, Lu J, Wang M, Petrunak E, Zawacki KP, et al. Discovery of EEDi-5273 as an exceptionally potent and orally efficacious EED inhibitor capable of achieving complete and persistent tumor regression. J Med Chem. 2021;64:14540–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang Y, Sendzik M, Zhang J, Gao Z, Sun Y, Wang L, et al. Discovery of the clinical candidate MAK683: an EED-directed, allosteric, and selective PRC2 inhibitor for the treatment of advanced malignancies. J Med Chem. 2022;65:5317–33.

    Article  CAS  PubMed  Google Scholar 

  46. Curran MP, Robinson DM, Keating GM. Intravenous nicardipine. Drugs. 2006;66:1755–82.

    Article  CAS  PubMed  Google Scholar 

  47. Roderick HL, Cook SJ. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 2008;8:361–75.

    Article  CAS  PubMed  Google Scholar 

  48. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium-cancer signalling nexus. Nat Rev Cancer. 2017;17:367–80.

    Article  CAS  PubMed  Google Scholar 

  49. Kurooka M, Hongyo T, Nakajima H, Baskar R, Li LY, Fukuda K, et al. High incidence of esophageal cancer in esophageal achalasia by the oral administration of N-amyl-N-methylnitrosamine and its prevention by nicardipine hydrochloride in mice. Cancer Lett. 1998;127:55–61.

    Article  CAS  PubMed  Google Scholar 

  50. Tsuruo T, Iida H, Nojiri M, Tsukagoshi S, Sakurai Y. Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res. 1983;43:2905–10.

    CAS  PubMed  Google Scholar 

  51. Kaba K, Tani E, Morimura T, Matsumoto T. Potentiation of vincristine effect in human and murine gliomas by calcium channel blockers or calmodulin inhibitors. J Neurosurg. 1985;63:905–11.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshida T, Shimizu K, Ushio Y, Mogami H, Sakamoto Y. Possibility of overcoming of ACNU resistance in an ACNU-resistant subline of C6 rat glioma. No To Shinkei. 1986;38:1065–70.

    CAS  PubMed  Google Scholar 

  53. Nomura K, Watanabe T, Nakamura O, Shibui S. Flow cytometric study of enhanced effect of anti-cancer drugs induced by nicardipine hydrochloride. Gan To Kagaku Ryoho. 1984;11:2252–60.

    CAS  PubMed  Google Scholar 

  54. Jiang C, Zheng T, Park JH, Lee JS, Oh Y, Kundu A, et al. Sensitization effects of repurposed blood pressure-regulating drugs on drug-resistant cancer cells. Anticancer Res. 2021;41:6179–90.

    Article  CAS  PubMed  Google Scholar 

  55. Shi J, Dong X, Li H, Wang H, Jiang Q, Liu L, et al. Nicardipine sensitizes temozolomide by inhibiting autophagy and promoting cell apoptosis in glioma stem cells. Aging (Albany NY). 2021;13:6820–31.

    Article  CAS  PubMed  Google Scholar 

  56. Honda T, Sampi K, Hattori M. Combination therapy of vinca alkaloids and nicardipine in non-Hodgkin’s lymphoma with resistant to various antineoplastic agents. Gan To Kagaku Ryoho. 1983;10:2330–4.

    CAS  PubMed  Google Scholar 

  57. Sampi K. Cancer chemotherapy combined with a calcium antagonist in patients with hematologic malignancies and solid tumors resistant to standard chemotherapy. Gan To Kagaku Ryoho. 1987;14:951–5.

    CAS  PubMed  Google Scholar 

  58. Bangalore S, Kumar S, Kjeldsen SE, Makani H, Grossman E, Wetterslev J, et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324,168 participants from randomised trials. Lancet Oncol. 2011;12:65–82.

    Article  CAS  PubMed  Google Scholar 

  59. Ennam SJ, Bylund DB. xPharm: the comprehensive pharmacology reference. Amsterdam: Elsevier; 2009.

  60. Milroy R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br J Cancer. 1993;68:813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Rhea-Beth Markowitz at Georgia Cancer Center, Augusta University, for editorial assistance.

Funding

This work was supported by the National Cancer Institute grants R01CA256058 and R42CA217491, National Institute on Minority Health and Health Disparities Research Center in Minority Institution grant U54MD007590, Department of Education Title III Program at Clark Atlanta University, Georgia Research Alliance VentureLab grant, and Emory University Biological Discovery through Chemical Innovation Initiative Seed Grant (DW).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: YD, HF, OK, DW. Methodology and investigation: XL, YC, YY, LB, RZ, YW, Z-RX, JMW, NJB, AD, NC, DL, MQ, YD. Data curation: XL, Z-RX, NJB, YD, DW. Formal analysis: XL, Z-RX, YD, DW. Funding acquisition: DW. Manuscript preparation: XL, YW, Z-RX, NJB, YD, HF, AOO, OK, DW.

Corresponding author

Correspondence to Daqing Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The Institutional Animal Care and Use Committee (IACUC) at Augusta University approved all animal protocols used in this study. All animal procedures were subjected to National Institutes of Health guidelines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, Y., Bai, L. et al. Nicardipine is a putative EED inhibitor and has high selectivity and potency against chemoresistant prostate cancer in preclinical models. Br J Cancer 129, 884–894 (2023). https://doi.org/10.1038/s41416-023-02359-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02359-y

This article is cited by

Search

Quick links