Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and Molecular Biology

The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy

Abstract

Lung cancer, a highly malignant disease, greatly affects patients’ quality of life. N6-methyladenosine (m6A) is one of the most common posttranscriptional modifications of various RNAs, including mRNAs and ncRNAs. Emerging studies have demonstrated that m6A participates in normal physiological processes and that its dysregulation is involved in many diseases, especially pulmonary tumorigenesis and progression. Among these, regulators including m6A writers, readers and erasers mediate m6A modification of lung cancer-related molecular RNAs to regulate their expression. Furthermore, the imbalance of this regulatory effect adversely affects signalling pathways related to lung cancer cell proliferation, invasion, metastasis and other biological behaviours. Based on the close association between m6A and lung cancer, various prognostic risk models have been established and novel drugs have been developed. Overall, this review comprehensively elaborates the mechanism of m6A regulation in the development of lung cancer, suggesting its potential for clinical application in the therapy and prognostic assessment of lung cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The m6A modification regulates the proliferation of lung cancer.
Fig. 2: The m6A modification regulates the invasion and migration of lung cancer.
Fig. 3: The role of m6A modification in the progression of lung cancer.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–87.

    Article  PubMed  Google Scholar 

  3. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.

    Article  PubMed  Google Scholar 

  4. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33.

    Article  PubMed  Google Scholar 

  5. Shaurova T, Zhang L, Goodrich DW, Hershberger PA. Understanding lineage plasticity as a path to targeted therapy failure in EGFR-mutant non-small cell lung cancer. Front Genet. 2020;11:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 2023;39:74–88.

    Article  CAS  PubMed  Google Scholar 

  7. Teng PC, Liang Y, Yarmishyn AA, Hsiao YJ, Lin TY, Lin TW, et al. RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int J Mol Sci. 2021;22:10592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–d7.

    Article  CAS  PubMed  Google Scholar 

  9. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  10. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, et al. High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem (Int ed Engl). 2015;54:1587–90.

    Article  CAS  PubMed  Google Scholar 

  12. Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12:767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, et al. A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev. 2015;29:2037–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013;19:1848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, et al. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods. 2016;13:692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, et al. Deciphering the ‘m(6)A Code’ via antibody-independent quantitative profiling. Cell. 2019;178:731–47.e16.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang SY, Zhang SW, Fan XN, Zhang T, Meng J, Huang Y. FunDMDeep-m6A: identification and prioritization of functional differential m6A methylation genes. Bioinforma. 2019;35:i90–i8.

    Article  CAS  Google Scholar 

  18. Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, et al. Accurate detection of m(6)A RNA modifications in native RNA sequences. Nat Commun. 2019;10:4079.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, et al. Single-base mapping of m(6)A by an antibody-independent method. Sci Adv. 2019;5:eaax0250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019;20:608–24.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m(6)A Reader YTHDC1 regulates mRNA Splicing. Mol Cell. 2016;61:507–19.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  PubMed  Google Scholar 

  25. Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, et al. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis. 2020;11:566.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  28. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  PubMed  Google Scholar 

  29. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du M, Zhang Y, Mao Y, Mou J, Zhao J, Xue Q, et al. MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochem Biophys Res Commun. 2017;482:582–9.

    Article  CAS  PubMed  Google Scholar 

  31. Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W, et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015;16:289–301.

    Article  CAS  PubMed  Google Scholar 

  32. Yue C, Chen J, Li Z, Li L, Chen J, Guo Y. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. J Exp Clin Cancer Res. 2020;39:240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xie H, Yao J, Wang Y, Ni B. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022;29:1257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lv W, Tan Y, Xiong M, Zhao C, Wang Y, Wu M, et al. Analysis and validation of m6A regulatory network: a novel circBACH2/has-miR-944/HNRNPC axis in breast cancer progression. J Transl Med. 2021;19:527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu X, Ye W, Gong Y. The Role of RNA Methyltransferase METTL3 in Normal and Malignant Hematopoiesis. Front Oncol. 2022;12:873903.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu Q. Current advances in N6-methyladenosine methylation modification during bladder cancer. Front Genet. 2021;12:825109.

    Article  CAS  PubMed  Google Scholar 

  37. Bueno-Costa A, Piñeyro D, García-Prieto CA, Ortiz-Barahona V, Martinez-Verbo L, Webster NA, et al. Remodeling of the m(6)A RNA landscape in the conversion of acute lymphoblastic leukemia cells to macrophages. Leukemia. 2022;36:2121–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem. 1994;269:17697–704.

    Article  CAS  PubMed  Google Scholar 

  39. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Huang J, Zou T, Yin P. Human m(6)A writers: two subunits, 2 roles. RNA Biol. 2017;14:300–4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, et al. VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69:1028–38.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021;49:7239–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3’-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA. 2016;113:14013–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47:7719–33.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao Y, Shi Y, Shen H, Xie W. m(6)A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol. 2020;13:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou H, Zheng M, Shi M, Wang J, Huang Z, Zhang H, et al. Characteristic of molecular subtypes in lung adenocarcinoma based on m6A RNA methylation modification and immune microenvironment. BMC Cancer. 2021;21:938.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan TN.6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions.Nature. 2015;518:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu B, Su S, Patil DP, Liu H, Gan J, Jaffrey SR, et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat Commun. 2018;9:420.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017;45:6051–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis. Nat Struct Mol Biol. 2017;24:870–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  59. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m(6)A(m) in the 5’ cap controls mRNA stability. Nature. 2017;541:371–5.

    Article  CAS  PubMed  Google Scholar 

  61. Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA. 2018;115:E325–e33.

    Article  CAS  PubMed  Google Scholar 

  62. Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 2017;7:42271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li H, Zhang Y, Guo Y, Liu R, Yu Q, Gong L, et al. ALKBH1 promotes lung cancer by regulating m6A RNA demethylation. Biochem Pharm. 2021;189:114284.

    Article  CAS  PubMed  Google Scholar 

  64. Scott RE, Wille JJ Jr., Wier ML. Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc. 1984;59:107–17.

    Article  CAS  PubMed  Google Scholar 

  65. Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, et al. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol. 2022;86:1158–74.

    Article  CAS  PubMed  Google Scholar 

  66. An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 2022;21:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang L, Bi R, Yin H, Liu H, Li L. ENO1 silencing impaires hypoxia-induced gemcitabine chemoresistance associated with redox modulation in pancreatic cancer cells. Am J Transl Res. 2019;11:4470–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma L, Xue X, Zhang X, Yu K, Xu X, Tian X, et al. The essential roles of m(6)A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022;41:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma L, Chen T, Zhang X, Miao Y, Tian X, Yu K, et al. The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol. 2021;38:101801.

    Article  CAS  PubMed  Google Scholar 

  71. Ma L, Zhang X, Yu K, Xu X, Chen T, Shi Y, et al. Targeting SLC3A2 subunit of system X(C)(-) is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med. 2021;168:25–43.

    Article  CAS  PubMed  Google Scholar 

  72. Xu Y, Lv D, Yan C, Su H, Zhang X, Shi Y, et al. METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int. 2022;22:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Karakashev SV, Reginato MJ. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy. Cancer Manag Res. 2015;7:253–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu P, Hu K, Zhang P, Sun ZG, Zhang N. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell Int. 2022;22:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019;10:4892.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu G, Zhai D, Xie J, Zhu S, Liang Z, Liu X, et al. N(6) -methyladenosine (m(6) A) RNA modification of G protein-coupled receptor 133 increases proliferation of lung adenocarcinoma. FEBS Open Bio. 2022;12:571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu Y, Chang N, Zhang Y, Zhang X, Xu L, Che Y, et al. METTL3-mediated m(6)A mRNA modification of FBXW7 suppresses lung adenocarcinoma. J Exp Clin Cancer Res. 2021;40:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen Y, Li C, Zhou L, Huang JA. G protein-coupled oestrogen receptor promotes cell growth of non-small cell lung cancer cells via YAP1/QKI/circNOTCH1/m6A methylated NOTCH1 signalling. J Cell Mol Med. 2021;25:284–96.

    Article  CAS  PubMed  Google Scholar 

  80. Zhang C, Sun Q, Zhang X, Qin N, Pu Z, Gu Y, et al. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2-dependent in lung adenocarcinoma. Cancer Commun. 2022;42:609–26.

    Article  CAS  Google Scholar 

  81. Lou X, Ning J, Liu W, Li K, Qian B, Xu D, et al. YTHDF1 promotes cyclin b1 translation through m(6)A modulation and contributes to the poor prognosis of lung adenocarcinoma with KRAS/TP53 co-mutation. Cells. 2021;10:1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, et al. m(6)A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther. 2022;29:1355–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu Z, Qian Q, Zhao X, Ma L, Chen P. N(6)-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene. 2020;731:144348.

    Article  CAS  PubMed  Google Scholar 

  84. Li J, Han Y, Zhang H, Qian Z, Jia W, Gao Y, et al. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun. 2019;512:479–85.

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Ren D, Du Z, Wang H, Zhang H, Jin Y. m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun. 2018;502:456–64.

    Article  CAS  PubMed  Google Scholar 

  86. Coker H, Wei G, Brockdorff N. m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 2019;1862:310–8.

    Article  CAS  PubMed  Google Scholar 

  87. Hu Z, Zhu L, Zhang Y, Chen B. N6-methyladenosine-induced SVIL antisense RNA 1 restrains lung adenocarcinoma cell proliferation by destabilizing E2F1. Bioengineered. 2022;13:3093–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han L, Lei G, Chen Z, Zhang Y, Huang C, Chen W. IGF2BP2 regulates MALAT1 by serving as an N6-methyladenosine reader to promote NSCLC proliferation. Front Mol Biosci. 2021;8:780089.

    Article  CAS  PubMed  Google Scholar 

  89. Liu X, Zuo X, Ma L, Wang Q, Zhu L, Li L, et al. Integrated analysis of the m6A-related lncRNA identified lncRNA ABALON/miR-139-3p/NOB1 axis was involved in the occurrence of lung cancer. Cancer Manag Res. 2021;13:8707–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen Z, Chen X, Lei T, Gu Y, Gu J, Huang J, et al. Integrative analysis of NSCLC identifies LINC01234 as an oncogenic lncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol Ther. 2020;28:1479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suarez-Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol. 2017;11:805–23.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7:re8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yang F, Yuan WQ, Li J, Luo YQ. Knockdown of METTL14 suppresses the malignant progression of non-small cell lung cancer by reducing Twist expression. Oncol Lett. 2021;22:847.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li J, Xie G, Tian Y, Li W, Wu Y, Chen F, et al. RNA m(6)A methylation regulates dissemination of cancer cells by modulating expression and membrane localization of β-catenin. Mol Ther. 2022;30:1578–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wanna-Udom S, Terashima M, Lyu H, Ishimura A, Takino T, Sakari M, et al. The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun. 2020;524:150–5.

    Article  CAS  PubMed  Google Scholar 

  96. Li J, Chen F, Peng Y, Lv Z, Lin X, Chen Z, et al. N6-Methyladenosine regulates the expression and secretion of TGFβ1 to affect the epithelial-mesenchymal transition of cancer cells. Cells. 2020;9:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sun Z, Su Z, Zhou Z, Wang S, Wang Z, Tong X, et al. RNA demethylase ALKBH5 inhibits TGF-β-induced EMT by regulating TGF-β/SMAD signaling in non-small cell lung cancer. FASEB J. 2022;36:e22283.

    Article  CAS  PubMed  Google Scholar 

  98. Cheng C, Wu Y, Xiao T, Xue J, Sun J, Xia H, et al. METTL3-mediated m(6)A modification of ZBTB4 mRNA is involved in the smoking-induced EMT in cancer of the lung. Mol Ther Nucleic Acids. 2021;23:487–500.

    Article  CAS  PubMed  Google Scholar 

  99. Shi L, Gong Y, Zhuo L, Wang S, Chen S, Ke B. Methyltransferase-like 3 upregulation is involved in the chemoresistance of non-small cell lung cancer. Ann Transl Med. 2022;10:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Liu S, Zhao T, Dang C. METTL3‑mediated m6A modification of Bcl‑2 mRNA promotes non‑small cell lung cancer progression. Oncol Rep. 2021;46:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang Y, Li M, Zhang L, Chen Y, Zhang S. m6A demethylase FTO induces NELL2 expression by inhibiting E2F1 m6A modification leading to metastasis of non-small cell lung cancer. Mol Ther Oncolytics. 2021;21:367–76.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang H, Deng Q, Lv Z, Ling Y, Hou X, Chen Z, et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol Cancer. 2019;18:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pan H, Pan Z, Guo F, Meng F, Zu L, Fan Y, et al. MicroRNA-1915-3p inhibits cell migration and invasion by targeting SET in non-small-cell lung cancer. BMC Cancer. 2021;21:1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.

    Article  CAS  PubMed  Google Scholar 

  105. Li C, Qin F, Wang W, Ni Y, Gao M, Guo M, et al. hnRNPA2B1-mediated extracellular vesicles sorting of miR-122-5p potentially promotes lung cancer progression. Int J Mol Sci. 2021;22:12866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang X, Liu C, Zhang S, Yan H, Zhang L, Jiang A, et al. N(6)-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev Cell. 2021;56:702–15.e8.

    Article  CAS  PubMed  Google Scholar 

  107. Cheng FW, Peng LM, Luo D. Methyltransferase-like 3 promotes the progression of lung cancer via activating PI3K/AKT/mTOR pathway. Clin Exp Pharm Physiol. 2022;49:748–58.

    Article  CAS  Google Scholar 

  108. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m(6)A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12:135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m(6)A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ni XF, Xie QQ, Zhao JM, Xu YJ, Ji M, Hu WW, et al. The hepatic microenvironment promotes lung adenocarcinoma cell proliferation, metastasis, and epithelial-mesenchymal transition via METTL3-mediated N6-methyladenosine modification of YAP1. Aging. 2021;13:4357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jin M, Li G, Liu W, Wu X, Zhu J, Zhao D, et al. Cigarette smoking induces aberrant N(6)-methyladenosine of DAPK2 to promote non-small cell lung cancer progression by activating NF-κB pathway. Cancer Lett. 2021;518:214–29.

    Article  CAS  PubMed  Google Scholar 

  112. Xu Y, Chen Y, Yao Y, Xie H, Lu G, Du C, et al. VIRMA contributes to non-small cell lung cancer progression via N(6)-methyladenosine-dependent DAPK3 post-transcriptional modification. Cancer Lett. 2021;522:142–54.

    Article  CAS  PubMed  Google Scholar 

  113. Zhao W, Xie Y. KIAA1429 promotes the progression of lung adenocarcinoma by regulating the m6A level of MUC3A. Pathol Res Pract. 2021;217:153284.

    Article  CAS  PubMed  Google Scholar 

  114. Sun Y, Sun X, You C, Ma S, Luo Y, Peng S, et al. MUC3A promotes non-small cell lung cancer progression via activating the NFκB pathway and attenuates radiosensitivity. Int J Biol Sci. 2021;17:2523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li Y, Sheng H, Ma F, Wu Q, Huang J, Chen Q, et al. RNA m(6)A reader YTHDF2 facilitates lung adenocarcinoma cell proliferation and metastasis by targeting the AXIN1/Wnt/β-catenin signaling. Cell Death Dis. 2021;12:479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guo J, Wu Y, Du J, Yang L, Chen W, Gong K, et al. Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression. Oncogenesis. 2018;7:49.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yang X, Shao F, Guo D, Wang W, Wang J, Zhu R, et al. WNT/β-catenin-suppressed FTO expression increases m(6)A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis. 2021;12:462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328:198–206.

    Article  CAS  PubMed  Google Scholar 

  119. Liu Y, Ao X, Jia Y, Li X, Wang Y, Wang J. The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med. 2022;100:997–1015.

    Article  CAS  PubMed  Google Scholar 

  120. Liu Y, Wang Y, Li X, Jia Y, Wang J, Ao X. FOXO3a in cancer drug resistance. Cancer Lett. 2022;540:215724.

    Article  CAS  PubMed  Google Scholar 

  121. Ning J, Wang F, Bu J, Zhu K, Liu W. Down-regulated m6A reader FTO destabilizes PHF1 that triggers enhanced stemness capacity and tumor progression in lung adenocarcinoma. Cell Death Discov. 2022;8:354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chao Y, Shang J, Ji W. ALKBH5-m(6)A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia. Biochem Biophys Res Commun. 2020;521:499–506.

    Article  CAS  PubMed  Google Scholar 

  123. Sato R, Semba T, Saya H, Arima Y. Concise review: stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells. 2016;34:1997–2007.

    Article  CAS  PubMed  Google Scholar 

  124. Liu X, Wang Z, Yang Q, Hu X, Fu Q, Zhang X, et al. RNA demethylase ALKBH5 prevents lung cancer progression by regulating EMT and stemness via regulating p53. Front Oncol. 2022;12:858694.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liu Y, Ao X, Yu W, Zhang Y, Wang J. Biogenesis, functions, and clinical implications of circular RNAs in non-small cell lung cancer. Mol Ther Nucleic Acids. 2022;27:50–72.

    Article  PubMed  Google Scholar 

  126. Rong L, Xu Y, Zhang K, Jin L, Liu X. HNRNPA2B1 inhibited SFRP2 and activated Wnt-β/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol Res Pract. 2022;233:153794.

    Article  CAS  PubMed  Google Scholar 

  127. Li S, Lu X, Zheng D, Chen W, Li Y, Li F. Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol. 2022;148:3485–3499.

    Article  Google Scholar 

  128. Qian X, Yang J, Qiu Q, Li X, Jiang C, Li J, et al. LCAT3, a novel m6A-regulated long non-coding RNA, plays an oncogenic role in lung cancer via binding with FUBP1 to activate c-MYC. J Hematol Oncol. 2021;14:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang S, Jin M, Lan X, Wu JL, Zhang Z, Zhao J, et al. LncRNA AC098934 promotes proliferation and invasion in lung adenocarcinoma cells by combining METTL3 and m6A modifications. J Cancer. 2022;13:2662–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li D, Fu Z, Dong C, Song Y. Methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit-induced long intergenic non-protein coding RNA 1833 N6-methyladenosine methylation promotes the non-small cell lung cancer progression via regulating heterogeneous nuclear ribonucleoprotein A2/B1 expression. Bioengineered. 2022;13:10493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yu H, Zhang Z. ALKBH5-mediated m6A demethylation of lncRNA RMRP plays an oncogenic role in lung adenocarcinoma. Mamm Genome. 2021;32:195–203.

    Article  CAS  PubMed  Google Scholar 

  132. Song H, Li H, Ding X, Li M, Shen H, Li Y, et al. Long non‑coding RNA FEZF1‑AS1 facilitates non‑small cell lung cancer progression via the ITGA11/miR‑516b‑5p axis. Int J Oncol. 2020;57:1333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xu J, Shang Y, Qin X, Gai Y, Cai F, Xiao H, et al. N6-Methyladenosine reader YTHDF2 enhances non-small-cell lung cancer cell proliferation and metastasis through mediating circ_SFMBT2 degradation. Contrast Media Mol Imaging. 2022;2022:1087622.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wei W, Huo B, Shi X. miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Manag Res. 2019;11:1177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Weng L, Qiu K, Gao W, Shi C, Shu F. LncRNA PCGEM1 accelerates non-small cell lung cancer progression via sponging miR-433-3p to upregulate WTAP. BMC Pulm Med. 2020;20:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mo WL, Deng LJ, Cheng Y, Yu WJ, Yang YH, Gu WD. Circular RNA hsa_circ_0072309 promotes tumorigenesis and invasion by regulating the miR-607/FTO axis in non-small cell lung carcinoma. Aging. 2021;13:11629–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021;12:295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat Commun. 2021;12:2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Integrative analyses of the RNA modification machinery reveal tissue- and cancer-specific signatures. Genome Biol. 2020;21:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J oral Sci. 2021;13:36.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, et al. Epigenetic modifications in acute myeloid leukemia: prognosis, treatment, and heterogeneity. Front Genet. 2019;10:133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Vaklavas C, Blume SW, Grizzle WE. Translational dysregulation in cancer: molecular insights and potential clinical applications in biomarker development. Front Oncol. 2017;7:158.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Guo W, Huai Q, Zhang G, Guo L, Song P, Xue X, et al. Elevated heterogeneous nuclear ribonucleoprotein C expression correlates with poor prognosis in patients with surgically resected lung adenocarcinoma. Front Oncol. 2020;10:598437.

    Article  PubMed  Google Scholar 

  144. Guo W, Huai Q, Wan H, Guo L, Song P, Gao S, et al. Prognostic impact of IGF2BP3 expression in patients with surgically resected lung adenocarcinoma. DNA Cell Biol. 2021;40:316–31.

    Article  CAS  PubMed  Google Scholar 

  145. Liu J, Li Z, Cheang I, Li J, Zhou C. RNA-binding protein IGF2BP1 associated with prognosis and immunotherapy response in lung adenocarcinoma. Front Genet. 2022;13:777399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hu K, Yao L, Yan Y, Zhou L, Li J. Comprehensive analysis of YTH domain family in lung adenocarcinoma: expression profile, association with prognostic value, and immune infiltration. Dis Markers. 2021;2021:2789481.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wang H, Zhao X, Lu Z. m(6)A RNA methylation regulators act as potential prognostic biomarkers in lung adenocarcinoma. Front Genet. 2021;12:622233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tan S, Li Z, Li K, Li Y, Liang G, Tang Z, et al. The regulators associated with N6-methyladenosine in lung adenocarcinoma and lung squamous cell carcinoma reveal new clinical and prognostic markers. Front Cell Dev Biol. 2021;9:741521.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sun L, Liu WK, Du XW, Liu XL, Li G, Yao Y, et al. Large-scale transcriptome analysis identified RNA methylation regulators as novel prognostic signatures for lung adenocarcinoma. Ann Transl Med. 2020;8:751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang Z, Zhang C, Luo Y, Wu P, Zhang G, Zeng Q, et al. m(6)A regulator expression profile predicts the prognosis, benefit of adjuvant chemotherapy, and response to anti-PD-1 immunotherapy in patients with small-cell lung cancer. BMC Med. 2021;19:284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang K, Han Z, Zhao H, Liu S, Zeng F. An integrated model of FTO and METTL3 expression that predicts prognosis in lung squamous cell carcinoma patients. Ann Transl Med. 2021;9:1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gu C, Shi X, Qiu W, Huang Z, Yu Y, Shen F, et al. Comprehensive analysis of the prognostic role and mutational characteristics of m6a-related genes in lung squamous cell carcinoma. Front Cell Dev Biol. 2021;9:661792.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li F, Wang H, Huang H, Zhang L, Wang D, Wan Y. m6A RNA Methylation regulators participate in the malignant progression and have clinical prognostic value in lung adenocarcinoma. Front Genet. 2020;11:994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guo W, Huai QL, Sun SJ, Guo L, Xue XM, Song P, et al. Development and validation of m6A RNA methylation regulators-based signature in lung adenocarcinoma. Chin Med J. 2021;134:2128–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Li X, Feng Z, Wang R, Hu J, He X, Shen Z. Expression status and prognostic value of m(6)A RNA methylation regulators in lung adenocarcinoma. Life. 2021;11:619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guo B, Zhang H, Wang J, Wu R, Zhang J, Zhang Q, et al. Identification of the signature associated with m(6)A RNA methylation regulators and m(6)A-related genes and construction of the risk score for prognostication in early-stage lung adenocarcinoma. Front Genet. 2021;12:656114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wang X, Zhao C, Huang D, Liu Z, Liu M, Lin F, et al. A novel M6A-related genes signature can impact the immune status and predict the prognosis and drug sensitivity of lung adenocarcinoma. Front Immunol. 2022;13:923533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang Y, Zhao X, Li J, Wang X, Hu W, Zhang X. Four m6A RNA Methylation Gene Signatures And Their Prognostic Values In Lung Adenocarcinoma. Technol Cancer Res Treat. 2022;21:15330338221085373.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Wu X, Sheng H, Wang L, Xia P, Wang Y, Yu L, et al. A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging. 2021;13:10034–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhu J, Wang M, Hu D. Deciphering N(6)-Methyladenosine-related Genes Signature To Predict Survival In Lung Adenocarcinoma. Biomed Res Int. 2020;2020:2514230.

    PubMed  PubMed Central  Google Scholar 

  161. Zhuang Z, Chen L, Mao Y, Zheng Q, Li H, Huang Y, et al. Diagnostic, progressive and prognostic performance of m(6)A methylation RNA regulators in lung adenocarcinoma. Int J Biol Sci. 2020;16:1785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu Y, Guo X, Zhao M, Ao H, Leng X, Liu M, et al. Contributions and prognostic values of m(6) A RNA methylation regulators in non-small-cell lung cancer. J Cell Physiol. 2020;235:6043–57.

    Article  CAS  PubMed  Google Scholar 

  163. Li N, Chen X, Liu Y, Zhou T, Li W. GenE characteristics and prognostic values of m(6)A RNA methylation regulators in nonsmall cell lung cancer. J Health Eng. 2021;2021:2257066.

    Google Scholar 

  164. Sun J, Ping Y, Huang J, Zeng B, Ji P, Li D. N6-Methyladenosine-regulated mRNAs: potential prognostic biomarkers for patients with lung adenocarcinoma. Front Cell Dev Biol. 2021;9:705962.

    Article  PubMed  PubMed Central  Google Scholar 

  165. David CJ, Manley JL. The search for alternative splicing regulators: new approaches offer a path to a splicing code. Genes Dev. 2008;22:279–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao Z, Cai Q, Zhang P, He B, Peng X, Tu G, et al. N6-methyladenosine RNA methylation regulator-related alternative splicing (AS) gene signature predicts non-small cell lung cancer prognosis. Front Mol Biosci. 2021;8:657087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hou Q, Zhong Y, Liu L, Wu L, Liu J. Construction of a lung adenocarcinoma prognostic model based on N6-methyl-adenosine-related long noncoding RNA and screening of potential drugs based on this model. Anticancer Drugs. 2022;33:371–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhao J, Lin X, Zhuang J, He F. Relationships of N6-methyladenosine-related long non-coding RNAs with tumor immune microenvironment and clinical prognosis in lung adenocarcinoma. Front Genet. 2021;12:714697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zheng J, Zhao Z, Wan J, Guo M, Wang Y, Yang Z, et al. N-6 methylation-related lncRNA is potential signature in lung adenocarcinoma and influences tumor microenvironment. J Clin Lab Anal. 2021;35:e23951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dong B, Wu C, Li SH, Huang L, Zhang C, Wu B, et al. Correlation of m6A methylation with immune infiltrates and poor prognosis in non-small cell lung cancer via a comprehensive analysis of RNA expression profiles. Ann Transl Med. 2021;9:1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhu J, Jiang Y, Wang T, Wu A, Zhou T, Zhang A, et al. Integrative analysis of m6A RNA methylation regulators and the tumor immune microenvironment in non-small-cell lung cancer. Dis Markers. 2022;2022:2989200.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Fan Y, Zhou Y, Lou M, Li X, Zhu X, Yuan K. m(6)A Regulator-mediated methylation modification patterns and characterisation of tumour microenvironment infiltration in non-small cell lung cancer. J Inflamm Res. 2022;15:1969–89.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ye W, Huang T. Correlation analysis of m6A-modified regulators with immune microenvironment infiltrating cells in lung adenocarcinoma. PLoS One. 2022;17:e0264384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jiang F, Hu Y, Liu X, Wang M, Wu C. Methylation pattern mediated by m(6)A regulator and tumor microenvironment invasion in lung adenocarcinoma. Oxid Med Cell Longev. 2022;2022:2930310.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhu M, Cui Y, Mo Q, Zhang J, Zhao T, Xu Y, et al. Characterization of m(6)A RNA methylation regulators predicts survival and immunotherapy in lung adenocarcinoma. Front Immunol. 2021;12:782551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xu P, Ge R. Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem. 2022;230:114118.

    Article  CAS  PubMed  Google Scholar 

  178. Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, et al. Non-coding RNA in cancer drug resistance: underlying mechanisms and clinical applications. Front Oncol. 2022;12:951864.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Liu Y, Ao X, Wang Y, Li X, Wang J. Long non-coding RNA in gastric cancer: mechanisms and clinical implications for drug resistance. Front Oncol. 2022;12:841411.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Liu Y, Ao X, Ji G, Zhang Y, Yu W, Wang J. Mechanisms of action and clinical implications of MicroRNAs in the drug resistance of gastric cancer. Front Oncol. 2021;11:768918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zuo YB, Zhang YF, Zhang R, Tian JW, Lv XB, Li R, et al. Ferroptosis in cancer progression: role of noncoding RNAs. Int J Biol Sci. 2022;18:1829–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021;276:119399.

    Article  CAS  PubMed  Google Scholar 

  183. Wang T, Liu Z, She Y, Deng J, Zhong Y, Zhao M, et al. A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis. Cancer Lett. 2021;520:321–31.

    Article  CAS  PubMed  Google Scholar 

  184. Zhang H, Wang SQ, Wang L, Lin H, Zhu JB, Chen R, et al. m6A methyltransferase METTL3-induced lncRNA SNHG17 promotes lung adenocarcinoma gefitinib resistance by epigenetically repressing LATS2 expression. Cell Death Dis. 2022;13:657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li K, Peng ZY, Gao S, Wang QS, Wang R, Li X, et al. M6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way. J Exp Clin Cancer Res. 2021;40:325.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Dagogo-Jack I, Shaw AT. Crizotinib resistance: implications for therapeutic strategies. Ann Oncol. 2016;27:iii42–iii50.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Ding N, You A, Tian W, Gu L, Deng D. Chidamide increases the sensitivity of non-small cell lung cancer to crizotinib by decreasing c-MET mRNA methylation. Int J Biol Sci. 2020;16:2595–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu S, Li Q, Li G, Zhang Q, Zhuo L, Han X, et al. The mechanism of m(6)A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death Dis. 2020;11:969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen H, Jia B, Zhang Q, Zhang Y. Meclofenamic acid restores gefinitib sensitivity by downregulating breast cancer resistance protein and multidrug resistance protein 7 via FTO/m6A-Demethylation/c-Myc in non-small cell lung cancer. Front Oncol. 2022;12:870636.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Li K, Gao S, Ma L, Sun Y, Peng ZY, Wu J, et al. Stimulation of Let-7 maturation by metformin improved the response to tyrosine kinase inhibitor therapy in an m6A dependent manner. Front Oncol. 2021;11:731561.

    Article  PubMed  Google Scholar 

  191. Song H, Liu D, Wang L, Liu K, Chen C, Wang L, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022;21:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ling Q, Wu S, Liao X, Liu C, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer. 2022;22:765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Chen WW, Qi JW, Hang Y, Wu JX, Zhou XX, Chen JZ, et al. Simvastatin is beneficial to lung cancer progression by inducing METTL3-induced m6A modification on EZH2 mRNA. Eur Rev Med Pharm Sci. 2020;24:4263–70.

    Google Scholar 

  194. Feng Y, Li C, Liu S, Yan F, Teng Y, Li X, et al. β-elemene restrains PTEN mRNa degradation to restrain the growth of lung cancer cells via METTL3-mediated N(6) methyladenosine modification. J Oncol. 2022;2022:3472745.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cui Y, Wu Y, Wang C, Wang Z, Li Y, Jiang Z, et al. Isoliquiritigenin inhibits non-small cell lung cancer progression via m(6)A/IGF2BP3-dependent TWIST1 mRNA stabilization. Phytomedicine. 2022;104:154299.

    Article  CAS  PubMed  Google Scholar 

  196. Wang X, Xu D, Chen B, Huang D, Li Z, Sui Y, et al. Delicaflavone represses lung cancer growth by activating antitumor immune response through n6-methyladenosine transferases and oxidative stress. Oxid Med Cell Longev. 2022;2022:8619275.

    PubMed  PubMed Central  Google Scholar 

  197. Sun X, Li Q, Yang L. Sevoflurane inhibits lncRNA HOTAIR-modulated stability of HK2 mRNA in a m6A-dependent manner to dampen aerobic glycolysis and proliferation in lung cancer. Biomed Res Int. 2022;2022:4668774.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Mu X, Zhao Q, Chen W, Zhao Y, Yan Q, Peng R, et al. IL-37 confers anti-tumor activity by regulation of m6A methylation. Front Oncol. 2020;10:526866.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (22006084); Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances (PTS2019-05; PTS2019-06); and graphical abstract was modified from Servier Medical Art (http://smart.servier.com/).

Author information

Authors and Affiliations

Authors

Contributions

MND, XJZ searched the literature, YFZ provided inspiration and guidance for writing, MND wrote the manuscript and prepared all the figures and tables. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yin-Feng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors consent to publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, MN., Zhang, XJ. & Zhang, YF. The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. Br J Cancer 129, 8–23 (2023). https://doi.org/10.1038/s41416-023-02246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02246-6

This article is cited by

Search

Quick links