Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

An antibody–drug conjugate targeting GPR56 demonstrates efficacy in preclinical models of colorectal cancer

Abstract

Background

Long-term prognosis remains poor for colorectal cancer (CRC) patients with advanced disease due to treatment resistance. The identification of novel targets is essential for the development of new therapeutic approaches. GPR56, an adhesion GPCR, is highly expressed in CRC tumours and correlates with poor survival. Here, we describe the generation and preclinical evaluation of a novel ADC consisting of an anti-GPR56 antibody (10C7) conjugated with the DNA-damaging payload duocarmycin.

Methods

RNA-seq dataset analysis was performed to determine GPR56 expression in CRC subtypes. The specificity of binding, epitope mapping, and internalisation of 10C7 was examined. 10C7 was conjugated to payload and ADC cytotoxicity was assessed against a panel of CRC cell lines and tumour organoids. Antitumour efficacy was evaluated in xenograft models of CRC cell lines and patient-derived tumours.

Results

High GPR56 was shown to be associated with the microsatellite stable (MSS) subtype that accounts for 80–85% of CRC. GPR56 ADC selectively induced cytotoxicity in CRC cells and tumour organoids at low nanomolar potency in a GPR56-dependent manner and showed significant antitumour efficacy against GPR56-expressing xenograft models.

Conclusions

This study provides the rationale for the future development of a GPR56-targeted ADC approach to potentially treat a large fraction of MSS CRC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPR56 expression and correlations with microsatellite instability (MSI), chromosomal instability (CIN), CpG island methylator phenotype (CIMP) and mutational statuses in colorectal cancer.
Fig. 2: Mapping of the 10C7 mAb epitope within the GAIN domain of the hGPR56 ECD.
Fig. 3: GPR56 mAb internalises and traffics to the lysosomes in CRC cells.
Fig. 4: Generation and characterisation of a GPR56-targeted antibody–drug conjugate.
Fig. 5: GPR56 ADC potently and selectively kills GPR56-high CRC cell lines and patient-derived tumour organoids.
Fig. 6: GPR56 ADC induces antitumour activity CRC cell line and patient-derived xenograft models.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this article and its supplementary information files.

References

  1. Society AC. Cancer Facts & Figures 2021. Atlanta, GA: American Cancer Society; 2021.

  2. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leal M, Sapra P, Hurvitz SA, Senter P, Wahl A, Schutten M, et al. Antibody-drug conjugates: an emerging modality for the treatment of cancer. Ann N Y Acad Sci. 2014;1321:41–54.

    Article  CAS  PubMed  Google Scholar 

  6. Teicher BA. Antibody drug conjugates. Curr Opin Oncol. 2014;26:476–83.

    Article  CAS  PubMed  Google Scholar 

  7. Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.

    Article  CAS  PubMed  Google Scholar 

  8. Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, et al. Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway. Mol Cancer Ther. 2007;6:1840–50.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Z, Huang Z, Yang W, Li Z, Xing S, Li H, et al. Expression of orphan GPR56 correlates with tumor progression in human epithelial ovarian cancer. Neoplasma. 2016;64:32–9.

  10. Sewda K, Coppola D, Enkemann S, Yue B, Kim J, Lopez AS, et al. Cell-surface markers for colon adenoma and adenocarcinoma. Oncotarget. 2016;7:17773–89.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang S, Chatterjee T, Godoy C, Wu L, Liu QJ, Carmon KS. GPR56 drives colorectal tumor growth and promotes drug resistance through upregulation of MDR1 expression via a RhoA-mediated mechanism. Mol Cancer Res. 2019;17:2196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haitina T, Olsson F, Stephansson O, Alsio J, Roman E, Ebendal T, et al. Expression profile of the entire family of adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci. 2008;9:43.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kaiser F, Morawski M, Krohn K, Rayes N, Hsiao CC, Quaas M, et al. Adhesion GPCR GPR56 expression profiling in human tissues. Cells. 2021;10:3557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, et al. GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene. 2005;24:1673–82.

    Article  CAS  PubMed  Google Scholar 

  16. Ji B, Feng Y, Sun Y, Ji D, Qian W, Zhang Z, et al. GPR56 promotes proliferation of colorectal cancer cells and enhances metastasis via epithelialmesenchymal transition through PI3K/AKT signaling activation. Oncol Rep. 2018;40:1885–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin G, Sakitani K, Wang H, Jin Y, Dubeykovskiy A, Worthley DL, et al. The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds progastrin to promote proliferation and carcinogenesis. Oncotarget. 2017;8:40606–19.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chatterjee T, Zhang S, Posey TA, Jacob J, Wu L, Yu W, et al. Anti-GPR56 monoclonal antibody potentiates GPR56-mediated Src-Fak signaling to modulate cell adhesion. J Biol Chem. 2021;296:100261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong X, Azhdarinia A, Ghosh SC, Xiong W, An Z, Liu Q, et al. LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol Cancer Ther. 2016;15:1580–90.

    Article  CAS  PubMed  Google Scholar 

  20. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  21. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  22. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines—a resource for biomedical studies. Mol Cancer. 2017;16:116.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2:e71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, Mahmoudi M, Dinarvand R, Zarnani AH. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019;11:3–23.

    PubMed  PubMed Central  Google Scholar 

  26. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: a review. J Am Med Assoc. 2021;325:669–85.

    Article  CAS  Google Scholar 

  27. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tolcher AW. Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol. 2016;27:2168–72.

    Article  CAS  PubMed  Google Scholar 

  29. Nadal-Serrano M, Morancho B, Escriva-de-Romani S, Morales CB, Luque A, Escorihuela M, et al. The second generation antibody-drug conjugate SYD985 overcomes resistances to T-DM1. Cancers. 2020;12:670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jukes Z, Morais GR, Loadman PM, Pors K. How can the potential of the duocarmycins be unlocked for cancer therapy? Drug Discov Today. 2021;26:577–84.

    Article  CAS  PubMed  Google Scholar 

  31. Powderly JD, Jang S, Lohr J, Spira AI, Bohac GC, Sharma M. Preliminary dose escalation results from a phase I/II, first-in-human study of MGC018 (anti-B7-H3 antibody-drug conjugate) in patients with advanced solid tumors. J Clin Oncol. 2020;38:3071.

    Article  Google Scholar 

  32. Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019;20:1124–35.

    Article  CAS  PubMed  Google Scholar 

  33. Liao MZ, Lu D, Kagedal M, Miles D, Samineni D, Liu SN, et al. Model-informed therapeutic dose optimization strategies for antibody-drug conjugates in oncology: what can we learn from US Food and Drug Administration-approved antibody-drug conjugates? Clin Pharm Ther. 2021;110:1216–30.

    Article  CAS  Google Scholar 

  34. Caimi PF, Ai W, Alderuccio JP, Ardeshna KM, Hamadani M, Hess B, et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021;22:790–800.

    Article  CAS  PubMed  Google Scholar 

  35. Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15:275–92.

    Article  CAS  PubMed  Google Scholar 

  36. Stepan LP, Trueblood ES, Hale K, Babcook J, Borges L, Sutherland CL. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: potential implications as a cancer therapeutic target. J Histochem Cytochem. 2011;59:701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, et al. Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol. 2011;90:735–40.

    Article  CAS  PubMed  Google Scholar 

  38. Chang GW, Hsiao CC, Peng YM, Vieira Braga FA, Kragten NA, Remmerswaal EB, et al. The adhesion G protein-coupled receptor GPR56/ADGRG1 is an inhibitory receptor on human NK cells. Cell Rep. 2016;15:1757–70.

    Article  CAS  PubMed  Google Scholar 

  39. Langenhan T, Aust G, Hamann J. Sticky signaling—adhesion class G protein-coupled receptors take the stage. Sci Signal. 2013;6:re3.

    Article  PubMed  Google Scholar 

  40. Arac D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Sudhof TC, et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 2012;31:1364–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Daria D, Kirsten N, Muranyi A, Mulaw M, Ihme S, Kechter A, et al. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia. 2016;30:1734–41.

    Article  CAS  PubMed  Google Scholar 

  42. Pabst C, Bergeron A, Lavallee VP, Yeh J, Gendron P, Norddahl GL, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood. 2016;127:2018–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Sheng Zhang and Wangsheng Yu for technical contributions, Betty Arceneaux and Dr. Karan Saluja with assistance in patient sample collection and processing, and Martha Thompson for assistance with regulatory approvals for research involving human subjects.

Funding

This work was supported by funding from the National Institutes of Health (NCI R01 CA226894) and Welch Foundation Endowment Fund Award (L-AU-0002-19940421) to KSC, funding from the Cancer Prevention and Research Institute of Texas (RP190542) to QJL and KSC, a fellowship of the Gulf Coast Consortia, on the Training Interdisciplinary Pharmacology Scientists Program (T32 GM139801) to JJ, and a Cancer Therapeutics Training Program Fellowship (RP210043) to LEF.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation and design: KSC; methodology: KSC; investigation: KSC, LEF, JJ, TC, SS, ZL, QJL and JR; data curation: KSC, JJ, LEF, TC, ZL and SS; formal analysis: KSC, LEF, JJ, TC and SS; writing original draft: KSC and JJ; review and editing: KSC, JJ and QJL; resources: KSC, QJL and JR; funding acquisition: KSC and QJL; supervision: KSC.

Corresponding author

Correspondence to Kendra S. Carmon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki. All studies involving human subjects and tissues were approved by the Institutional Review Board at UTHealth Houston (HSC-MS-20-0327 and HSC-MS-21-0074). Written informed consent was obtained from all participants. All animal experiments were approved by the Animal Welfare Committee (AWC-20-0144) at UTHealth Houston.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, J., Francisco, L.E., Chatterjee, T. et al. An antibody–drug conjugate targeting GPR56 demonstrates efficacy in preclinical models of colorectal cancer. Br J Cancer 128, 1592–1602 (2023). https://doi.org/10.1038/s41416-023-02192-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02192-3

Search

Quick links