Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Translational Therapeutics

Trop-2 and Nectin-4 immunohistochemical expression in metastatic colorectal cancer: searching for the right population for drugs’ development

Abstract

Background

Trop-2 and Nectin-4 are transmembrane proteins overexpressed in many tumours and targets of antibody–drug conjugates (ADC). In metastatic colorectal cancer (mCRC), the role of Trop-2 and Nectin-4 has been poorly investigated.

Methods

Tumour samples of patients randomised in the phase III TRIBE2 were assessed for Trop-2 and Nectin-4 expression.

Results

Three hundred eighty-six tumours were assessed for Trop-2 expression. 90 (23%), 115 (30%) and 181 (47%) were Trop-2 high, medium and low, respectively. Patients with low Trop-2 tumours achieved longer PFS (12 versus 9.9 months, p = 0.047) and OS (27.3 versus 21.3 months, p = 0.015) than those with high/medium Trop-2 tumours. These findings were confirmed in multivariate analysis (p = 0.022 and p = 0.023, respectively). A greater OS benefit from treatment intensification with FOLFOXIRI/bevacizumab was observed in patients with high/medium Trop-2 tumours (p-for-interaction = 0.041).

Two hundred fifty-one tumours were assessed for Nectin-4 expression. Fourteen (5%), 67 (27%) and 170 (68%) were high, medium and low, respectively. No prognostic impact was observed based on Nectin-4 expression and no interaction effect was reported between Nectin-4 expression groups and treatment arm.

Conclusions

In mCRC, expression levels of Trop-2 and Nectin-4 are heterogeneous, suggesting a target-driven development of anti-Trop2 and anti-Nectin-4 ADCs. Medium/high Trop-2 expression is associated with worse prognosis and higher benefit from chemotherapy intensification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kaplan-Meier curves according Trop-2 expression levels.
Fig. 2: Kaplan-Meier curves according Trop-2 expression levels and treatment.
Fig. 3: Kaplan-Meier curves according Nectin-4 expression levels.

Similar content being viewed by others

Data availability

Datasets supporting the results of this work are available to editors, referees and readers promptly upon request.

References

  1. Lipinski M, Parks DR, Rouse RV, Herzenberg LA. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc Natl Acad Sci USA 1981;78:5147–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276:1268–72.

    Article  CAS  PubMed  Google Scholar 

  3. Ambrogi F, Fornili M, Boracchi P, Trerotola M, Relli V, Simeone P, et al. Trop-2 is a determinant of breast cancer survival. PLoS ONE. 2014;9:e96993.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vidula N, Yau C, Rugo HS. Trop2 gene expression (Trop2e) in primary breast cancer (BC): correlations with clinical and tumor characteristics. JCO. 2017;35:1075–1075.

    Article  Google Scholar 

  5. Avellini C, Licini C, Lazzarini R, Gesuita R, Guerra E, Tossetta G, et al. The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer. Oncotarget. 2017;8:58642–53.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fong D, Spizzo G, Gostner JM, Gastl G, Moser P, Krammel C, et al. TROP2: a novel prognostic marker in squamous cell carcinoma of the oral cavity. Mod Pathol. 2008;21:186–91.

    Article  CAS  PubMed  Google Scholar 

  7. Pak MG, Shin DH, Lee CH, Lee MK. Significance of EpCAM and TROP2 expression in non-small cell lung cancer. World J Surg Oncol. 2012;10:53.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fong D, Moser P, Krammel C, Gostner JM, Margreiter R, Mitterer M, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br J Cancer. 2008;99:1290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohmachi T, Tanaka F, Mimori K, Inoue H, Yanaga K, Mori M. Clinical significance of TROP2 expression in colorectal cancer. Clin Cancer Res. 2006;12:3057–63.

    Article  CAS  PubMed  Google Scholar 

  10. Mühlmann G, Spizzo G, Gostner J, Zitt M, Maier H, Moser P, et al. TROP2 expression as prognostic marker for gastric carcinoma. J Clin Pathol. 2009;62:152–8.

    Article  PubMed  Google Scholar 

  11. Ripani E, Sacchetti A, Corda D, Alberti S. Human Trop-2 is a tumor-associated calcium signal transducer. Int J Cancer. 1998;76:671–6.

    Article  CAS  PubMed  Google Scholar 

  12. Basu A, Goldenberg DM, Stein R. The epithelial/carcinoma antigen EGP-1, recognized by monoclonal antibody RS7-3G11, is phosphorylated on serine 303. Int J Cancer. 1995;62:472–9.

    Article  CAS  PubMed  Google Scholar 

  13. Trerotola M, Cantanelli P, Guerra E, Tripaldi R, Aloisi AL, Bonasera V, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32:222–33.

    Article  CAS  PubMed  Google Scholar 

  14. Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer. 2015;6:84–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989–9006.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zeng P, Chen MB, Zhou LN, Tang M, Liu CY, Lu PH. Impact of TROP2 expression on prognosis in solid tumors: a systematic review and meta-analysis. Sci Rep. 2016;6:33658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol. 2008;9:603–15.

    Article  CAS  PubMed  Google Scholar 

  18. Reymond N, Fabre S, Lecocq E, Adelaïde J, Dubreuil P, Lopez M. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J Biol Chem. 2001;276:43205–15.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman-Censits JH, Lombardo KA, Parimi V, Kamanda S, Choi W, Hahn NM, et al. Expression of Nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl Immunohistochem Mol Morphol. 2021;29:619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lattanzio R, Ghasemi R, Brancati F, Sorda RL, Tinari N, Perracchio L, et al. Membranous Nectin-4 expression is a risk factor for distant relapse of T1-T2, N0 luminal-A early breast cancer. Oncogenesis. 2014;3:e118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Zhang J, Shen Q, Yin W, Huang H, Liu Y, et al. High expression of Nectin-4 is associated with unfavorable prognosis in gastric cancer. Oncol Lett. 2018;15:8789–95.

    PubMed  PubMed Central  Google Scholar 

  22. Zhang J, Liu K, Peng P, Li S, Ye Z, Su Y, et al. Upregulation of nectin‑4 is associated with ITGB1 and vasculogenic mimicry and may serve as a predictor of poor prognosis in colorectal cancer. Oncol Lett. 2019;18:1163–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishiwada S, Sho M, Yasuda S, Shimada K, Yamato I, Akahori T, et al. Nectin-4 expression contributes to tumor proliferation, angiogenesis and patient prognosis in human pancreatic cancer. J Exp Clin Cancer Res. 2015;34:30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takano A, Ishikawa N, Nishino R, Masuda K, Yasui W, Inai K, et al. Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer. Cancer Res. 2009;69:6694–703.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Liu S, Wang L, Wu Y, Hao J, Wang Z, et al. A novel PI3K/AKT signaling axis mediates Nectin-4-induced gallbladder cancer cell proliferation, metastasis and tumor growth. Cancer Lett. 2016;375:179–89.

    Article  CAS  PubMed  Google Scholar 

  26. M-Rabet M, Cabaud O, Josselin E, Finetti P, Castellano R, Farina A, et al. Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann Oncol. 2017;28:769–76.

    Article  CAS  PubMed  Google Scholar 

  27. Rajc J, Gugić D, Fröhlich I, Marjanović K, Dumenčić B. Prognostic role of Nectin-4 expression in luminal B (HER2 negative) breast cancer. Pathol Res Pract. 2017;213:1102–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ma J, Sheng Z, Lv Y, Liu W, Yao Q, Pan T, et al. Expression and clinical significance of Nectin-4 in hepatocellular carcinoma. Onco Targets Ther. 2016;9:183–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ, Vahdat LT, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21:3870–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, et al. Enfortumab vedotin antibody-drug conjugate targeting Nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76:3003–13.

    Article  CAS  PubMed  Google Scholar 

  31. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, et al. Sacituzumab Govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384:1529–41.

    Article  CAS  PubMed  Google Scholar 

  32. Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Durán I, Lee JL, et al. Enfortumab Vedotin in previously treated advanced urothelial carcinoma. N Engl J Med. 2021;384:1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. FDA Grants Regular Approval to Sacituzumab Govitecan-hziy for Pretreated Patients With Triple-Negative Breast Cancer—The ASCO Post [Internet]. 2022. https://ascopost.com/issues/may-25-2021/fda-grants-regular-approval-to-sacituzumab-govitecan-hziy-for-pretreated-patients-with-triple-negative-breast-cancer/.

  34. ESMO. EMA Recommends Granting a Marketing Authorisation for Sacituzumab Govitecan [Internet]. 2022. https://www.esmo.org/oncology-news/ema-recommends-granting-a-marketing-authorisation-for-sacituzumab-govitecan.

  35. FDA. Research C for DE and FDA grants regular approval to enfortumab vedotin-ejfv for locally advanced or metastatic urothelial cancer. 2022. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer.

  36. European Medicines Agency Accepts Marketing Authorization Application for Enfortumab Vedotin [Internet]. 2022. https://investor.seagen.com/press-releases/news-details/2021/European-Medicines-Agency-Accepts-Marketing-Authorization-Application-for-Enfortumab-Vedotin/default.aspx.

  37. Peng LX, Zhao P, Zhao HS, Pan E, Yang BB, Li Q. Phosphoinositide 3-kinase/Akt pathway is involved in pingyangmycin‑induced growth inhibition, apoptosis and reduction of invasive potential in EOMA mouse hemangioendothelioma cells. Mol Med Rep. 2015;12:8275–81.

    Article  CAS  PubMed  Google Scholar 

  38. Cremolini C, Antoniotti C, Rossini D, Lonardi S, Loupakis F, Pietrantonio F, et al. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020;21:497–507.

    Article  CAS  PubMed  Google Scholar 

  39. Bychkov A, Sampatanukul P, Shuangshoti S, Keelawat S. TROP-2 immunohistochemistry: a highly accurate method in the differential diagnosis of papillary thyroid carcinoma. Pathology. 2016;48:425–33.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg JE, O’Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, et al. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. JCO. 2019;37:2592–600.

    Article  CAS  Google Scholar 

  41. Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-drug conjugate-based therapeutics: state of the science. J Natl Cancer Inst. 2019;111:538–49.

    Article  PubMed  Google Scholar 

  42. Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25:5441–8.

    Article  CAS  PubMed  Google Scholar 

  43. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody–drug conjugates: the last decade. Pharmaceuticals. 2020;13:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng J, Ou Q, Deng Y, Xiao B, Zhang L, Li J, et al. TROP2 overexpression in colorectal liver oligometastases is associated with poor prognosis after liver resection. Ther Adv Med Oncol. 2019;11:1758835919897543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang YJ, Lu ZH, Wang GQ, Pan ZZ, Zhou ZW, Yun JP, et al. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int J Colorectal Dis. 2009;24:875–84.

    Article  CAS  PubMed  Google Scholar 

  46. Dum D, Taherpour N, Menz A, Höflmayer D, Völkel C, Hinsch A, et al. Trophoblast cell surface antigen 2 expression in human tumors: a tissue microarray study on 18,563 tumors. PAT. 2022;89:245–58.

    CAS  Google Scholar 

  47. Bardia A, Messersmith WA, Kio EA, Berlin JD, Vahdat L, Masters GA, et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann Oncol. 2021;32:746–56.

    Article  CAS  PubMed  Google Scholar 

  48. Gray JE, Heist RS, Starodub AN, Camidge DR, Kio EA, Masters GA, et al. Therapy of small cell lung cancer (SCLC) with a topoisomerase-i-inhibiting antibody-drug conjugate (ADC) targeting trop-2, Sacituzumab Govitecan. Clin Cancer Res. 2017;23:5711–9.

    Article  CAS  PubMed  Google Scholar 

  49. Siena S, Bartolomeo MD, Raghav K, Masuishi T, Loupakis F, Kawakami H, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 2021;22:779–89.

    Article  CAS  PubMed  Google Scholar 

  50. Heath EI, Rosenberg JE. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat Rev Urol. 2021;18:93–103.

    Article  PubMed  Google Scholar 

  51. Cheung CC, Banerjee D, Barnes PJ, Berendt RC, Butany J, Canil S, et al. Canadian Association of Pathologists–Association canadienne des pathologistes National Standards Committee for High Complexity Testing/Immunohistochemistry: Guidelines for the Preparation, Release, and Storage of Unstained Archived Diagnostic Tissue Sections for Immunohistochemistry. Am J Clin Pathol. 2014;142:629–33.

    Article  PubMed  Google Scholar 

  52. Grillo F, Pigozzi S, Ceriolo P, Calamaro P, Fiocca R, Mastracci L. Factors affecting immunoreactivity in long-term storage of formalin-fixed paraffin-embedded tissue sections. Histochem Cell Biol. 2015;144:93–9.

    Article  CAS  PubMed  Google Scholar 

  53. Das D, Satapathy SR, Siddharth S, Nayak A, Kundu CN. NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K-AKT cascade. Cancer Chemother Pharm. 2015;76:471–9.

    Article  CAS  Google Scholar 

  54. Sethy C, Goutam K, Nayak D, Pradhan R, Molla S, Chatterjee S, et al. Clinical significance of a pvrl 4 encoded gene Nectin-4 in metastasis and angiogenesis for tumor relapse. J Cancer Res Clin Oncol. 2020;146:245–59.

    Article  CAS  PubMed  Google Scholar 

  55. Nicolò E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM, et al. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treatment Reviews [Internet]. 2022. https://www.cancertreatmentreviews.com/article/S0305-7372(22)00059-7/fulltext.

Download references

Acknowledgements

We are grateful to GONO and ARCO Foundations, to all participating patients and their families, and to the GONO investigators from the participating Italian centres.

Funding

The study was supported by GONO and ARCO Foundations (no grant number applicable). The sponsors had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

Study concepts: RM, CU, MMG, CC. Study design: RM, CU, MMG, MG, CC. Data acquisition: CU, MMG, MG. Quality control of the data and algorithms: CU, MMG, MG. Data analysis and interpretation: RM, CU, MMG, MG, CC. Statistical analysis: RM, MMG. Manuscript preparation: RM, MMG. Manuscript editing: CU, GF, CC. Manuscript review: all authors.

Corresponding author

Correspondence to Chiara Cremolini.

Ethics declarations

Competing interests

FP: Honoraria—Amgen, Merck-Serono, Sanofi, Lilly, Bayer, Servier, Astrazeneca, MSD; Research Grants—Astrazeneca, BMS, Incyte. SL: Speakers’ Bureau—Amgen, Merck, Roche, Lilly, Bristol-Myers Squibb, Pierre-Fabre, GSK and Servier. Consulting or advisory role—Amgen, MSD, Merck Serono, Lilly, Astra Zeneca, Incyte, Daiichi-Sankyo, Bristol-Myers Squibb, Servier, Research Grants—Bayer, Merck, Amgen, Roche, Lilly, Astra Zeneca Bristol-Myers Squibb. FB: Honoraria—Lilly. Travel, accommodations and expenses—Bayer, Ipsen. GM: Honoraria—Amgen, Hoffmane-La Roche, Bayer, Merk Serono, Sirtex. CC: Honoraria—Amgen, Bayer, Merck, Roche and Servier. Consulting or advisory role—Amgen, Bayer, MSD, Roche. Speakers’ Bureau—Servier. Research funding—Bayer, Merck, Servier. Travel, accommodations and expenses—Roche and Servier. The remaining authors declared no competing interests.

Ethics approval and consent to participate

All patients provided written informed consent to study procedures before enrolment. Approvals for TRIBE protocol were obtained from local ethics committees of participating sites.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretto, R., Germani, M.M., Giordano, M. et al. Trop-2 and Nectin-4 immunohistochemical expression in metastatic colorectal cancer: searching for the right population for drugs’ development. Br J Cancer 128, 1391–1399 (2023). https://doi.org/10.1038/s41416-023-02180-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02180-7

This article is cited by

Search

Quick links