Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Manassantin A inhibits tumour growth under hypoxia through the activation of chaperone-mediated autophagy by modulating Hsp90 activity

Abstract

Background

Chaperon-mediated autophagy (CMA) has taken on a new emphasis in cancer biology. However, the roles of CMA in hypoxic tumours are poorly understood. We investigated the anti-tumour effects of the natural product ManA through the activation of CMA in tumour progression under hypoxia.

Methods

The effect of ManA on CMA activation was assessed in mouse xenograft models and cells. The gene expressions of HIF-1α, HSP90AA1, and transcription factor EB (TFEB) were analysed using The Cancer Genome Atlas (TCGA) datasets to assess the clinical relevance of CMA.

Results

ManA activates photoswitchable CMA reporter activity and inhibits Hsp90 chaperone function by disrupting the Hsp90/F1F0-ATP synthase complex. Hsp90 inhibition enhances the interaction between CMA substrates and LAMP-2A and TFEB nuclear localisation, suggesting CMA activation by ManA. ManA-activated CMA retards tumour growth and displays cooperative anti-tumour activity with anti-PD-1 antibody. TCGA datasets show that a combined expression of HSP90AA1High/HIF1AHigh or TFEBLow/HIF1AHigh is strongly correlated with poor prognosis in patients with lung cancer.

Conclusions

ManA-induced CMA activation by modulating Hsp90 under hypoxia induces HIF-1α degradation and reduces tumour growth. Thus, inducing CMA activity by targeting Hsp90 may be a promising therapeutic strategy against hypoxic tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HIF-1α protein is degraded by manassantin A through lysosome-mediated autophagy.
Fig. 2: Activation of chaperone-mediated autophagy by manassantin A induces HIF-1α degradation and inhibits cancer cell proliferation under hypoxic conditions.
Fig. 3: Manassantin A-mediated CMA activation is associated with Hsp90 chaperon function.
Fig. 4: Inhibition of Hsp90 or LAMP-2A does not augment the effect of anti-tumour growth by ManA.
Fig. 5: Activation of chaperone-mediated autophagy by manassantin A enhances antitumor effects in combination with an anti-PD-1 antibody.
Fig. 6: Expression of HIF1A and HSP90 predicts overall survival in lung cancer patients.

Similar content being viewed by others

Data availability

All data except for microarray data generated during this study are included in the article or uploaded as Supplementary Information. The accession number for the microarray data reported in this study is GEO: GSE110768.

References

  1. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12:814–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem. 2018;293:5414–24.

    Article  CAS  PubMed  Google Scholar 

  3. Ouchida AT, Li Y, Geng J, Najafov A, Ofengeim D, Sun X, et al. Synergistic effect of a novel autophagy inhibitor and Quizartinib enhances cancer cell death. Cell Death Dis. 2018;9:138.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vakifahmetoglu-Norberg H, Kim M, Xia HG, Iwanicki MP, Ofengeim D, Coloff JL, et al. Chaperone-mediated autophagy degrades mutant p53. Genes Dev. 2013;27:1718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gomes LR, Menck CFM, Cuervo AM. Chaperone-mediated autophagy prevents cellular transformation by regulating MYC proteasomal degradation. Autophagy. 2017;13:928–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, et al. Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. J Cell Biol. 2015;210:705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18:345–60.

    Article  CAS  PubMed  Google Scholar 

  8. Finn PF, Mesires NT, Vine M, Dice JF. Effects of small molecules on chaperone-mediated autophagy. Autophagy 2005;1:141–5.

    Article  CAS  PubMed  Google Scholar 

  9. Xue N, Lai F, Du T, Ji M, Liu D, Yan C, et al. Chaperone-mediated autophagy degradation of IGF-1Rbeta induced by NVP-AUY922 in pancreatic cancer. Cell Mol Life Sci. 2019;76:3433–47.

    Article  CAS  PubMed  Google Scholar 

  10. Kwon DY, Lee HE, Weitzel DH, Park K, Lee SH, Lee CT, et al. Synthesis and biological evaluation of manassantin analogues for hypoxia-inducible factor 1alpha inhibition. J Med Chem. 2015;58:7659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwak SH, Stephenson TN, Lee HE, Ge Y, Lee H, Min SM, et al. Evaluation of manassantin a tetrahydrofuran core region analogues and cooperative therapeutic effects with EGFR inhibition. J Med Chem. 2020;63:6821–33.

    Article  CAS  PubMed  Google Scholar 

  12. Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today. 2007;12:853–9.

    Article  CAS  PubMed  Google Scholar 

  13. Young L, Sung J, Stacey G, Masters JR. Detection of mycoplasma in cell cultures. Nat Protoc. 2010;5:929–34.

    Article  CAS  PubMed  Google Scholar 

  14. Kim H, Kasper AC, Moon EJ, Park Y, Wooten CM, Dewhirst MW, et al. Nucleophilic addition of organozinc reagents to 2-sulfonyl cyclic ethers: stereoselective synthesis of manassantins A and B. Org Lett. 2009;11:89–92.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kusuma BR, Brandt GE, Blagg BS. Synthesis of cruentaren A. Org Lett. 2012;14:6242–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kareva I, Waxman DJ, Lakka, Klement G. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett. 2015;358:100–6.

    Article  CAS  PubMed  Google Scholar 

  17. Lin F, Chen H, Jiang T, Zheng J, Liu Q, Yang B, et al. The effect of low-dose chemotherapy on the tumor microenvironment and its antitumor activity combined with anti-PD-1 antibody. Immunotherapy. 2022;14:283–94.

  18. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1:72–80.

    Article  CAS  PubMed  Google Scholar 

  19. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-mediated autophagy targets hypoxia-inducible factor-1alpha (HIF-1alpha) for lysosomal degradation. J Biol Chem. 2013;288:10703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo AM. A photoconvertible fluorescent reporter to track chaperone-mediated autophagy. Nat Commun. 2011;2:386.

    Article  PubMed  Google Scholar 

  22. Frudd K, Burgoyne T, Burgoyne JR. Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun. 2018;9:95.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Robert G, Jacquel A, Auberger P. Chaperone-mediated autophagy and its emerging role in hematological malignancies. Cells. 2019;8:1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 2009;9:1084–101.

    Article  CAS  PubMed  Google Scholar 

  25. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313:1929–35.

    Article  CAS  PubMed  Google Scholar 

  27. Matts RL, Manjarrez JR. Assays for identification of Hsp90 inhibitors and biochemical methods for discriminating their mechanism of action. Curr Top Med Chem. 2009;9:1462–78.

    Article  CAS  PubMed  Google Scholar 

  28. Hughes PF, Barrott JJ, Carlson DA, Loiselle DR, Speer BL, Bodoor K, et al. A highly selective Hsp90 affinity chromatography resin with a cleavable linker. Bioorg Med Chem. 2012;20:3298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Papathanassiu AE, MacDonald NJ, Bencsura A, Vu HA. F1F0-ATP synthase functions as a co-chaperone of Hsp90-substrate protein complexes. Biochem Biophys Res Commun. 2006;345:419–29.

    Article  CAS  PubMed  Google Scholar 

  30. Hall JA, Kusuma BR, Brandt GE, Blagg BS. Cruentaren A binds F1F0 ATP synthase to modulate the Hsp90 protein folding machinery. ACS Chem Biol. 2014;9:976–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, et al. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;8:14338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, et al. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med. 2011;3:109ra17.

    Article  Google Scholar 

  33. Marinkovic M, Sprung M, Buljubasic M, Novak I. Autophagy modulation in cancer: current knowledge on action and therapy. Oxid Med Cell Longev. 2018;2018:8023821.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoter A, El-Sabban ME, Naim HY. The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci. 2018;19:2560.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chae YC, Angelin A, Lisanti S, Kossenkov AV, Speicher KD, Wang H, et al. Landscape of the mitochondrial Hsp90 metabolome in tumours. Nat Commun. 2013;4:2139.

    Article  PubMed  Google Scholar 

  36. Garg G, Khandelwal A, Blagg BS. Anticancer inhibitors of hsp90 function: beyond the usual suspects. Adv Cancer Res. 2016;129:51–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325:473–7.

    Article  CAS  PubMed  Google Scholar 

  38. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011;332:1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen J, Mao K, Yu H, Wen Y, She H, Zhang H, et al. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson’s disease. J Neuroinflammation. 2021;18:295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci USA. 2013;110:E1817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012;31:1095–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang J, Wang J, Zhou Z, Park JE, Wang L, Wu S, et al. Importance of TFEB acetylation in control of its transcriptional activity and lysosomal function in response to histone deacetylase inhibitors. Autophagy. 2018;14:1043–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Arias E, Cuervo AM. Pros and cons of chaperone-mediated autophagy in cancer biology. Trends Endocrinol Metab. 2020;31:53–66.

    Article  CAS  PubMed  Google Scholar 

  44. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011;42:719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tang J, Zhan MN, Yin QQ, Zhou CX, Wang CL, Wo LL, et al. Impaired p65 degradation by decreased chaperone-mediated autophagy activity facilitates epithelial-to-mesenchymal transition. Oncogenesis. 2017;6:e387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E, Vakifahmetoglu-Norberg H. Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy. 2019;15:1558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int. 2012;60:431–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Haystead (Duke University) for HS-10, Dr. Masaaki Komatsu (Tokyo Metropolitan Institute of Medical Science) for ATG7 wild-type and KO HeLa cells, Dr. Ballabio (Baylor College of Medicine) for TFEB-3 x Flag expression vector, Dr. Blagg (University of Notre Dame) for cruentaren A, and Dr. Neckers (National Cancer Institute) for pcDNA3-FLAG-tagged wild-type hHsp90a vectors used in this work. We thank Dr. Fitzgerald (Duke University) and Dr. Mook Jr. (Duke University) for the helpful discussions.

Funding

This work was supported by the National Research Foundation of Korea (NRF-2020R1A5A2017323 to YML) and the American Cancer Society (122057-RSG-12-045-01-CDD to JH).

Author information

Authors and Affiliations

Authors

Contributions

J-KB, J-HJ, SHL, M-HP, HJ and NB conducted biochemical, cellular, and in vivo experiments and collected data. D-YK and TNS synthesised manassantin A used in this study. SJP and H-HK conducted biophysical measurements. BAP synthesised cruentaren A used in this study. EJM and J-TC conducted gene expression profiling. DHW and C-TL conducted HS-10 resin experiments. EJM conducted the analysis of patient survival data. YML, JH, MWD, J-TC and SJP analysed and discussed the data. YML and JH conceived the project, designed the overall experimental strategy, wrote the manuscript with input from all the authors, and held overall responsibility for the study.

Corresponding authors

Correspondence to Jiyong Hong or You Mie Lee.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, JK., Lee, S.H., Moon, E.J. et al. Manassantin A inhibits tumour growth under hypoxia through the activation of chaperone-mediated autophagy by modulating Hsp90 activity. Br J Cancer 128, 1491–1502 (2023). https://doi.org/10.1038/s41416-023-02148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02148-7

This article is cited by

Search

Quick links