Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Plasma extracellular vesicle circRNA signature and resistance to abiraterone in metastatic castration-resistant prostate cancer

Abstract

Background

We aimed to develop and validate a plasma extracellular vesicle circular RNA (circRNA)-based signature that can predict overall survival (OS) in first-line abiraterone therapy for metastatic castration-resistant prostate cancer (mCRPC) patients.

Methods

In total, 582 mCRPC patients undergoing first-line abiraterone therapy from four institutions were sorted by three phases. In the discovery phase, 30 plasma samples from 30 case-matched patients with or without early progression were obtained to generate circRNA expression profiles using RNA sequencing. In the training phase, differentially expressed circRNAs were examined using digital droplet PCR in a training cohort (n = 203). The circRNA signature was constructed using a least absolute shrinkage and selection operator Cox regression to predict OS. In the validation phase, the prognostic ability of this signature was prospectively validated in two external cohorts (Cohort I, n = 183; Cohort II, n = 166).

Results

We developed a five-circRNA signature, based on circCEP112, circFAM13A, circBRWD1, circVPS13C and circMACROD2, which successfully stratified patients into high-risk and low-risk groups. The prognostic ability of this signature was prospectively validated in two external cohorts (P < 0.0001, P < 0.0001). Patients with high-risk scores had shorter OS than patients with low-risk scores.

Conclusion

This five-circRNA signature is a reliable predictor of OS for mCRPC patients undergoing abiraterone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study flow.
Fig. 2: Construction of the five-circRNA signature.
Fig. 3: CircRNA risk-score analysis of 203 mCRPC patients in the training cohort.
Fig. 4: CircRNA risk-score analysis of 183 mCRPC patients in Cohort I.
Fig. 5: CircRNA risk-score analysis of 166 mCRPC patients in Cohort II.
Fig. 6: Best PSA responses, Kaplan–Meier curves of progression-free survival and overall survival according to the five-circRNA signature.
Fig. 7: Discriminatory performance of the five-circRNA signature using receiver operating characteristic analyses in the training and validation cohorts.
Fig. 8: Discriminatory performance of the five-circRNA signature using decision curve analyses in the training and validation cohorts.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kozminsky M, Fouladdel S, Chung JS, Wang Y, Smith DC, Alva A, et al. Detection of CTC clusters and a dedifferentiated RNA-expression survival signature in prostate cancer. Adv Sci. 2019;6:1801254.

    Article  Google Scholar 

  2. Posadas EM, Chi KN, de Wit R, de Jonge MJA, Attard G, Friedlander TW, et al. Pharmacokinetics, safety, and antitumor effect of apalutamide with abiraterone acetate plus prednisone in metastatic castration-resistant prostate cancer: phase Ib study. Clin Cancer Res. 2020;26:3517–24.

    Article  CAS  PubMed  Google Scholar 

  3. O’Donnell A, Judson I, Dowsett M, Raynaud F, Dearnaley D, Mason M, et al. Hormonal impact of the 17alpha-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br J Cancer. 2004;90:2317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S, et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008;26:4563–71.

    Article  CAS  PubMed  Google Scholar 

  5. Romanel A, Gasi Tandefelt D, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D, et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med. 2015;7:312re10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.

    Article  CAS  PubMed  Google Scholar 

  7. De Laere B, van Dam PJ, Whitington T, Mayrhofer M, Diaz EH, Van den Eynden G, et al. Comprehensive profiling of the androgen receptor in liquid biopsies from castration-resistant prostate cancer reveals novel intra-AR structural variation and splice variant expression patterns. Eur Urol. 2017;72:192–200.

    Article  PubMed  Google Scholar 

  8. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol. 2019;37:1120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang R, Sun Y, Li L, Niu Y, Lin W, Lin C, et al. Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9((R)) to suppress enzalutamide-resistant prostate cancer progression. Eur Urol. 2017;72:835–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greene J, Baird AM, Casey O, Brady L, Blackshields G, Lim M, et al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci Rep. 2019;9:10739.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cao S, Ma T, Ungerleider N, Roberts C, Kobelski M, Jin L, et al. Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene. 2019;38:7060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao G, et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019;10:37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Rodrigues DN, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019;129:192–208.

    Article  PubMed  Google Scholar 

  15. Zhang Y, Pitchiaya S, Cieslik M, Niknafs YS, Tien JC, Hosono Y, et al. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet. 2018;50:814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500:598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 2017;23:3918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Del ReM, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol. 2017;71:680–7.

    Article  Google Scholar 

  20. Krug AK, Enderle D, Karlovich C, Priewasser T, Bentink S, Spiel A, et al. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma. Ann Oncol. 2018;29:700–6.

    Article  CAS  PubMed  Google Scholar 

  21. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67:33–41.

    Article  CAS  PubMed  Google Scholar 

  22. Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, et al. Widespread and functional RNA circularization in localized prostate. Cancer Cell. 2019;176:831–43. e22

    CAS  Google Scholar 

  23. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1–73.

    Article  PubMed  Google Scholar 

  24. Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26:1148–59.

    Article  PubMed  Google Scholar 

  25. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  26. He YD, Tao W, He T, Wang BY, Tang XM, Zhang LM, et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/mL at initial biopsy. Mol Cancer. 2021;20:96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Glazar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20:1666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  29. Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 2016;165:289–302.

    Article  CAS  PubMed  Google Scholar 

  30. Halabi S, Lin CY, Kelly WK, Fizazi KS, Moul JW, Kaplan EB, et al. Updated prognostic model for predicting overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2014;32:671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16:385–95.

    Article  CAS  PubMed  Google Scholar 

  32. Black WC, Haggstrom DA, Welch HG. All-cause mortality in randomized trials of cancer screening. J Natl Cancer Inst. 2002;94:167–73.

    Article  PubMed  Google Scholar 

  33. Gao X, Li LY, Rassler J, Pang J, Chen MK, Liu WP, et al. Prospective study of CRMP4 promoter methylation in prostate biopsies as a predictor for lymph node metastases. J Natl Cancer Inst. 2017;109:djw282.

    Article  Google Scholar 

  34. Olmos D, Brewer D, Clark J, Danila DC, Parker C, Attard G, et al. Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study. Lancet Oncol. 2012;13:1114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Zhao J, Yu S, Wang Z, He X, Su Y, et al. Extracellular vesicles long RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human blood as potential biomarkers for cancer diagnosis. Clin Chem. 2019;65:798–808.

    Article  CAS  PubMed  Google Scholar 

  36. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  37. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    Article  CAS  PubMed  Google Scholar 

  38. Gold B, Cankovic M, Furtado LV, Meier F, Gocke CD. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? A report of the association for molecular pathology. J Mol Diagn. 2015;17:209–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients involved in this study.

Funding

This study was funded by National Natural Science Foundation of China (81472383, 81502206, 81772753, 81972419), Guangdong Provincial Natural Science Foundation of China (2014A030313088, 2017A030313478), Guangdong Provincial Science and Technology Provincial Science and Technology Foundation of China (2016A020215073), Guangzhou Science and Technology Foundation of China (201804010324), and the Fundamental Research Funds for the Central Universities (17ykzd21).

Author information

Authors and Affiliations

Authors

Contributions

XG and L-YL: conceptualisation. WT, Z-HL, Y-DH and B-YW: methodology and writing manuscript original draft. WT, Z-HL, Y-DH and B-YW: formal analysis. WT, T-LX, W-MD, L-XZ, X-MT and Z-AM: data collection and curation. X-MT and Z-AM: biological sample analysis and interpretation of these data. All authors: reviewing and editing the manuscript. XG and L-YL: supervision. XG and L-YL: project administration. L-YL and Y-DH: funding acquisition.

Corresponding authors

Correspondence to Xin Gao or Liao-Yuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was conducted in compliance and in accordance with the Declaration of Helsinki. This study was approved by the Institutional Ethical Review Board at The Third Affiliated Hospital of Sun Yat-sen University, and signed informed consent was obtained for all subjects included in the study.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Luo, ZH., He, YD. et al. Plasma extracellular vesicle circRNA signature and resistance to abiraterone in metastatic castration-resistant prostate cancer. Br J Cancer 128, 1320–1332 (2023). https://doi.org/10.1038/s41416-023-02147-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-023-02147-8

This article is cited by

Search

Quick links