Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular

AMPK phosphorylates and stabilises copper transporter 1 to synergise metformin and copper chelator for breast cancer therapy

Abstract

Background

Predominant roles of copper and its transporter, copper transporter 1 (CTR1), in tumorigenesis have been explored recently; however, the upstream regulation of CTR1 and combinational intervention of copper chelators in malignancies remain largely unclear.

Methods

CRISPR/Cas9-based kinome screening was used to identify the CTR1 upstream kinases. Immunofluorescence assays were utilised to detect CTR1 localisation. In vitro kinase assays and mass spectrometry were performed to detect CTR1 phosphorylation. Ubiquitination assays were performed to validate CTR1 stability. Colony formation, EdU labelling, Annexin V-FITC/PI-based apoptosis assays were carried out to detect the drug effect on cell growth and apoptosis. Xenografted mouse models were employed to investigate drug effects in vivo.

Results

We identify that CTR1 undergoes AMPK-mediated phosphorylation, which enhances CTR1 stabilisation and membrane translocation by affecting Nedd4l interaction, resulting in increased oncogenic roles in breast cancer. Importantly, activation of AMPK with its agonist metformin markedly enhances CTR1 levels, and leads to the combinational usage of AMPK agonists and copper chelators for breast cancer treatment.

Conclusions

Our findings not only reveal the crosstalk between energy response and copper uptake via AMPK-mediated CTR1 phosphorylation and stability but also highlight the strategy to combat breast cancer by a combination of AMPK agonists and copper chelators.

Significance

The connection between energy response and copper homoeostasis is linked by AMPK phosphorylating and stabilising CTR1, which provides a promising strategy to combat breast cancer by combining AMPK agonists and copper chelators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AMPK enhances CTR1 protein levels.
Fig. 2: AMPK activation facilitates CTR1 membrane location.
Fig. 3: AMPK directly phosphorylates CTR1.
Fig. 4: AMPK-mediated CTR1 phosphorylation affects its protein level and localisation.
Fig. 5: AMPK activation blocks Nedd4l-mediated CTR1 degradation.
Fig. 6: Metformin synergises with copper chelator TTM in breast cancer cells.
Fig. 7: Metformin synergises with copper chelator TTM in vivo.

Similar content being viewed by others

Data availability

Data are available on request to the authors.

References

  1. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321:288–300.

    Article  CAS  PubMed  Google Scholar 

  2. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 2017;389:2430–42.

    Article  CAS  PubMed  Google Scholar 

  3. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48.

    Article  CAS  PubMed  Google Scholar 

  4. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19:5533–40.

    Article  CAS  PubMed  Google Scholar 

  5. Winters S, Martin C, Murphy D, Shokar NK. Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci. 2017;151:1–32.

    Article  CAS  PubMed  Google Scholar 

  6. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Prim. 2019;5:66.

    Article  PubMed  Google Scholar 

  7. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab and Nab-Paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379:2108–21.

    Article  CAS  PubMed  Google Scholar 

  8. Feng Y, Zeng JW, Ma Q, Zhang S, Tang J, Feng JF. Serum copper and zinc levels in breast cancer: a meta-analysis. J Trace Elem Med Biol. 2020;62:126629.

    Article  CAS  PubMed  Google Scholar 

  9. Lopez J, Ramchandani D, Vahdat L. Copper depletion as a therapeutic strategy in cancer. Met Ions Life Sci. 2019;19.

  10. Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H. Copper deficiency anemia: review article. Ann Hematol. 2018;97:1527–34.

    Article  CAS  PubMed  Google Scholar 

  11. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014;509:492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv Sci (Weinh). 2021;8:e2004303.

    Article  PubMed  Google Scholar 

  13. Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 2020;22:412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM, et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 2020;80:4129–44.

    Article  CAS  PubMed  Google Scholar 

  15. Rieber M. Cancer pro-oxidant therapy through copper redox cycling: repurposing disulfiram and tetrathiomolybdate. Curr Pharm Des. 2020;26:4461–6.

    Article  CAS  PubMed  Google Scholar 

  16. Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA. Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab. 2013;24:469–80.

    Article  CAS  PubMed  Google Scholar 

  17. Rattan R, Giri S, Singh AK, Singh I. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J Biol Chem. 2005;280:39582–93.

    Article  CAS  PubMed  Google Scholar 

  18. Lee YK, Park OJ. Regulation of mutual inhibitory activities between AMPK and Akt with quercetin in MCF-7 breast cancer cells. Oncol Rep. 2010;24:1493–7.

    CAS  PubMed  Google Scholar 

  19. Ponnusamy L, Natarajan SR, Thangaraj K, Manoharan R. Therapeutic aspects of AMPK in breast cancer: progress, challenges, and future directions. Biochim Biophys Acta Rev Cancer. 2020;1874:188379.

    Article  CAS  PubMed  Google Scholar 

  20. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27:3297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle. 2009;8:2031–40.

    Article  CAS  PubMed  Google Scholar 

  22. Lega IC, Fung K, Austin PC, Lipscombe LL. Metformin and breast cancer stage at diagnosis: a population-based study. Curr Oncol. 2017;24:e85–e91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scherbakov AM, Sorokin DV, Tatarskiy VV Jr, Prokhorov NS, Semina SE, Berstein LM, et al. The phenomenon of acquired resistance to metformin in breast cancer cells: the interaction of growth pathways and estrogen receptor signaling. IUBMB Life. 2016;68:281–92.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang Q, Zheng N, Bu L, Zhang X, Zhang X, Wu Y, et al. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Mol Cancer. 2021;20:100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bertinato J, L’Abbe MR. Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome. J Biol Chem. 2003;278:35071–8.

    Article  CAS  PubMed  Google Scholar 

  26. West EC, Prohaska JR. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice. Exp Biol Med (Maywood). 2004;229:756–64.

    Article  CAS  PubMed  Google Scholar 

  27. Caruano-Yzermans AL, Bartnikas TB, Gitlin JD. Mechanisms of the copper-dependent turnover of the copper chaperone for superoxide dismutase. J Biol Chem. 2006;281:13581–7.

    Article  CAS  PubMed  Google Scholar 

  28. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 2018;19:121–35.

    Article  CAS  PubMed  Google Scholar 

  29. Clifford RJ, Maryon EB, Kaplan JH. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu(+) uptake system. J Cell Sci. 2016;129:1711–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Puig S, Thiele DJ. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol. 2002;6:171–80.

    Article  CAS  PubMed  Google Scholar 

  31. Maryon EB, Molloy SA, Zimnicka AM, Kaplan JH. Copper entry into human cells: progress and unanswered questions. Biometals. 2007;20:355–64.

    Article  CAS  PubMed  Google Scholar 

  32. Mandal T, Kar S, Maji S, Sen S, Gupta A. Structural and functional diversity among the members of CTR, the membrane copper transporter family. J Membr Biol. 2020;253:459–68.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS, Spears JW, et al. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem. 2010;285:32385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petris MJ, Smith K, Lee J, Thiele DJ. Copper-stimulated endocytosis and degradation of the human copper transporter, hCtr1. J Biol Chem. 2003;278:9639–46.

    Article  CAS  PubMed  Google Scholar 

  35. Trefts E, Shaw RJ. AMPK: restoring metabolic homeostasis over space and time. Mol Cell. 2021;81:3677–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta. 2016;1866:232–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Amano T, Nakamizo A, Mishra SK, Gumin J, Shinojima N, Sawaya R, et al. Simultaneous phosphorylation of p53 at serine 15 and 20 induces apoptosis in human glioma cells by increasing expression of pro-apoptotic genes. J Neurooncol. 2009;92:357–71.

    Article  CAS  PubMed  Google Scholar 

  38. Faria J, Negalha G, Azevedo A, Martel F. Metformin and breast cancer: molecular targets. J Mammary Gland Biol Neoplasia. 2019;24:111–23.

    Article  CAS  PubMed  Google Scholar 

  39. De A, Kuppusamy G. Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer. 2020;44:100488.

    Article  PubMed  Google Scholar 

  40. Sammons S, Brady D, Vahdat L, Salama AK. Copper suppression as cancer therapy: the rationale for copper chelating agents in BRAF(V600) mutated melanoma. Melanoma Manag. 2016;3:207–16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu M, Casio M, Range DE, Sosa JA, Counter CM. Copper chelation as targeted therapy in a mouse model of oncogenic BRAF-driven papillary thyroid cancer. Clin Cancer Res. 2018;24:4271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramchandani D, Berisa M, Tavarez DA, Li Z, Miele M, Bai Y, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun. 2021;12:7311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Snima KS, Pillai P, Cherian AM, Nair SV, Lakshmanan VK. Anti-diabetic drug metformin: challenges and perspectives for cancer therapy. Curr Cancer Drug Targets. 2014;14:727–36.

    Article  CAS  PubMed  Google Scholar 

  45. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.

    Article  CAS  PubMed  Google Scholar 

  46. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004;101:3329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, et al. 5’-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol. 2006;26:5336–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saito Y, Chapple RH, Lin A, Kitano A, Nakada D. AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell. 2015;17:585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan Q, Bao LW, Kleer CG, Brewer GJ, Merajver SD. Antiangiogenic tetrathiomolybdate enhances the efficacy of doxorubicin against breast carcinoma. Mol Cancer Ther. 2003;2:617–22.

    CAS  PubMed  Google Scholar 

  51. Das A, Ash D, Fouda AY, Sudhahar V, Kim YM, Hou Y, et al. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nat Cell Biol. 2022;24:35–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu Y, Zhou L, Wang X, Lu J, Zhang R, Liang X, et al. A genome-scale CRISPR-Cas9 screening method for protein stability reveals novel regulators of Cdc25A. Cell Discov. 2016;2:16014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312:212–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Guo laboratory for critical reading and kind suggestions for the manuscript. We thank Xiaolin Tian and Dr Haiteng Deng in Center of Protein Analysis Technology, Tsinghua University, for MS analysis. This work was supported by National Natural Science Foundation of China to JG (32070767, 31871410), China Postdoctoral Science Foundation (XZ, 2020M672954).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived and designed by JG and XZ. Development of methodology: XZ and QJ. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): XZ, QJ, YS, LB. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): XZ, QJ, YS, LB. Writing, review, and/or revision of the manuscript: JG, XZ, QJ, YL. Administrative, technical, or material support (i.e., reporting or organising data, constructing databases): WX, XW, BG, ZS, LW. Study supervision: JG, WX, YL. Approved manuscript: all authors.

Corresponding authors

Correspondence to Ying Lin, Wei Xie or Jianping Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures followed are in accordance with the ethical standards approved by the Institutional Animal Care and Use Committee of Sun Yat-sen University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, Q., Su, Y. et al. AMPK phosphorylates and stabilises copper transporter 1 to synergise metformin and copper chelator for breast cancer therapy. Br J Cancer 128, 1452–1465 (2023). https://doi.org/10.1038/s41416-022-02127-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02127-4

Search

Quick links