Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Dysregulation of alternative splicing contributes to multiple myeloma pathogenesis

Abstract

Background

Dysregulation of alternative splicing (AS) triggers many tumours, understanding the roles of splicing events during tumorigenesis would open new avenues for therapies and prognosis in multiple myeloma (MM).

Methods

Molecular, genetic, bioinformatic and statistic approaches are used to determine the mechanism of the candidate splicing factor (SF) in myeloma cell lines, myeloma xenograft models and MM patient samples.

Results

GSEA reveals a significant difference in the expression pattern of the alternative splicing pathway genes, notably enriched in MM patients. Upregulation of the splicing factor SRSF1 is observed in the progression of plasma cell dyscrasias and predicts MM patients’ poor prognosis. The c-indices of the Cox model indicated that SRSF1 improved the prognostic stratification of MM patients. Moreover, SRSF1 knockdown exerts a broad anti-myeloma activity in vitro and in vivo. The upregulation of SRSF1 is caused by the transcription factor YY1, which also functions as an oncogene in myeloma cells. Through RNA-Seq, we systematically verify that SRSF1 promotes the tumorigenesis of myeloma cells by switching AS events.

Conclusion

Our results emphasise the importance of AS for promoting tumorigenesis of MM. The candidate SF might be considered as a valuable therapeutic target and a potential prognostic biomarker for MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aberrant alternative splicing in MM.
Fig. 2: SRSF1 increases tumorigenic potentials of MM.
Fig. 3: SRSF1 is positively regulated by the transcription factor YY1.
Fig. 4: Dysregulated YY1 promotes myeloma progression and is associated with a poor prognosis.
Fig. 5: Global landscape alternative splicing events regulated by SRSF1.

Similar content being viewed by others

Data availability

The data generated in this study are publicly available in Gene Expression Omnibus (GEO) at GSE160724. Other detailed assays are available in the supplemental methods. The data supporting the findings of this study can be found in the article, or available from the corresponding author upon reasonable request.

References

  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  CAS  PubMed  Google Scholar 

  2. van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397:410–27.

    Article  PubMed  Google Scholar 

  3. Rajkumar SV. The screening imperative for multiple myeloma. Nature. 2020;587:S63.

    Article  CAS  PubMed  Google Scholar 

  4. van Andel H, Kocemba KA, Spaargaren M, Pals ST. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia. 2019;33:1063–75.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pawlyn C, Davies FE. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood. 2019;133:660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rahman MA, Krainer AR, Abdel-Wahab O. SnapShot: splicing alterations in cancer. Cell. 2020;180:208–208. e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anczukow O, Akerman M, Clery A, Wu J, Shen C, Shirole NH, et al. SRSF1-regulated alternative splicing in breast cancer. Mol Cell. 2015;60:105–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang E, Aifantis I. RNA splicing and cancer. Trends Cancer. 2020;6:631–44.

    Article  CAS  PubMed  Google Scholar 

  9. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417:15–27.

    Article  CAS  PubMed  Google Scholar 

  10. Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 2018;23:282–96. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell. 2018;34:211–24. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16:413–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Y, Huang B, Shi Z, Han J, Wang Y, Huangfu J, et al. SRSF1 and SRSF9 RNA binding proteins promote Wnt signalling-mediated tumorigenesis by enhancing beta-catenin biosynthesis. EMBO Mol Med. 2013;5:737–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen L, Luo C, Shen L, Liu Y, Wang Q, Zhang C, et al. SRSF1 prevents DNA damage and promotes tumorigenesis through regulation of DBF4B Pre-mRNA splicing. Cell Rep. 2017;21:3406–13.

    Article  CAS  PubMed  Google Scholar 

  15. Xie N, Chen M, Dai R, Zhang Y, Zhao H, Song Z, et al. SRSF1 promotes vascular smooth muscle cell proliferation through a Delta133p53/EGR1/KLF5 pathway. Nat Commun. 2017;8:16016.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR, et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell. 2010;38:67–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, et al. The role of alternative splicing in cancer: from oncogenesis to drug resistance. Drug Resist Updat. 2020;53:100728.

    Article  PubMed  Google Scholar 

  18. Fu XD, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15:689–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonnal SC, Lopez-Oreja I, Valcarcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17:457–74.

    Article  PubMed  Google Scholar 

  20. Malakar P, Shilo A, Mogilevsky A, Stein I, Pikarsky E, Nevo Y, et al. Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 2017;77:1155–67.

    Article  CAS  PubMed  Google Scholar 

  21. Denichenko P, Mogilevsky M, Clery A, Welte T, Biran J, Shimshon O, et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat Commun. 2019;10:1590.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bushweller JH. Targeting transcription factors in cancer—from undruggable to reality. Nat Rev Cancer. 2019;19:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol. 2012;19:220–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14:185–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell. 2005;120:59–72.

    Article  CAS  PubMed  Google Scholar 

  26. Batson J, Toop HD, Redondo C, Babaei-Jadidi R, Chaikuad A, Wearmouth SF, et al. Development of potent, selective SRPK1 inhibitors as potential topical therapeutics for neovascular eye disease. ACS Chem Biol. 2017;12:825–32.

    Article  CAS  PubMed  Google Scholar 

  27. Allen C, Horton K, Malhi N, Batson J, Bates D. The SRPK1 inhibitor SPHINX31 prevents increased retinal permeability in a rodent model of diabetes. Acta Ophthalmologica 2017;95.

  28. Das S, Anczukow O, Akerman M, Krainer AR. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep. 2012;1:110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene. 2006;25:1125–42.

    Article  CAS  PubMed  Google Scholar 

  30. Tang W, Zhou W, Xiang L, Wu X, Zhang P, Wang J, et al. The p300/YY1/miR-500a-5p/HDAC2 signalling axis regulates cell proliferation in human colorectal cancer. Nat Commun. 2019;10:663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weintraub A, Li C, Zamudio A, Sigova A, Hannett N, Day D, et al. YY1 is a structural regulator of enhancer-promoterloops. Cell. 2017;171:1573–88.

  32. Han J, Meng J, Chen S, Wang X, Yin S, Zhang Q, et al. YY1 complex promotes quaking expression via super-enhancer binding during EMT of hepatocellular carcinoma. Cancer Res. 2019;79:1451–64.

    Article  CAS  PubMed  Google Scholar 

  33. Shi J, Hao A, Zhang Q, Sui G. The role of YY1 in oncogenesis and its potential as a drug target in cancer therapies. Curr Cancer Drug Targets. 2015;15:145–57.

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Zhou L, Li Z, Zhang T, Liu W, Liu Z, et al. YY1 suppresses FEN1 over-expression and drug resistance in breast cancer. BMC Cancer. 2015;15:50.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17:19–32.

    Article  CAS  PubMed  Google Scholar 

  36. Michlewski G, Sanford JR, Caceres JF. The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1. Mol Cell. 2008;30:179–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research leading to these results has received funding from the National Natural Science Foundation of China (82270197, 82270211), Natural Science Foundation of Jiangsu Province China (BK20201408), The special project of “Technological innovation” project of CNNC Medical Industry Co. Ltd.) (ZHYLYB2021002), Jiangsu Social Development Project—New Clinical Diagnosis and Treatment Technology (BE2019664).

Author information

Authors and Affiliations

Authors

Contributions

W Zhuang and BL designed the research, SS and W Zhang performed the research, JL and QL wrote the paper, ZW, Qi Su and XZ performed the research and modified the paper.

Corresponding authors

Correspondence to Bingzong Li or Wenzhuo Zhuang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Zhang, W., Li, Q. et al. Dysregulation of alternative splicing contributes to multiple myeloma pathogenesis. Br J Cancer 128, 1086–1094 (2023). https://doi.org/10.1038/s41416-022-02124-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02124-7

Search

Quick links