Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Exosomal transfer of miR-181b-5p confers senescence-mediated doxorubicin resistance via modulating BCLAF1 in breast cancer

Abstract

Background

Doxorubicin resistance represents a major clinical challenge for treating patients with advanced breast cancer (BC). Exosomes, exchanging genetic cargo between heterogeneous populations of tumour cells, have been proposed to mediate drug resistance and cancer progression in other cancer types. However, their specific role in mediating doxorubicin resistance in BC remains unclear. Here, we demonstrate the important role of exosomal miR-181b-5p (exo-miR-181b-5p) in mediating doxorubicin resistance.

Methods

Small-RNA sequencing and bioinformatic analyses were used to screen miRNAs mediating doxorubicin resistance in BC, which were further verified by RT-qPCR. SA-β-gal staining assays allowed us to measure cellular senescence. Exosomes from patients’ serum before and after neoadjuvant chemotherapy were isolated for exo-miR-181b-5p quantification.

Results

Doxorubicin-resistant BC cell lines exhibited upregulated exosomal miR-181b-5p. Addition of exo-miR-181b-5p actively fused with recipient cells and transferred a drug-resistant phenotype. Overexpression of miR-181b-5p downregulated p53/p21 levels and inhibited doxorubicin-induced G1 arrest and senescence by suppressing BCLAF1 expression in vitro. Further, in vivo experiments showed treatment of exo-miR-181b-5p inhibitors exhibited superior tumour control and reversed the doxorubicin-resistance phenotype, accompanied with increased tumoral BCLAF1.

Conclusion

Our data suggests exo-miR-181b-5p as a prognostic biomarker and a therapeutic potential for exo-miR-181b-5p inhibitors in the treatment of doxorubicin-resistant BC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conditioned medium from DOX-resistant cells transfers a senescence-mediated DOX-resistant phenotype in breast cancer cells.
Fig. 2: Exosomes derived from DOX-resistant cells transfer a DOX-resistant phenotype consistent with inhibition of DOX-induced cellular senescence.
Fig. 3: Identification of miR-181b-5p secreted in exosomes by DOX-resistant cells as a key mediator of DOX-resistance transfer in breast cancer cell lines; and correlates with DOX-resistance in patient samples.
Fig. 4: Exosomal miR-181b-5p induces DOX-resistance in recipient cells via downregulation of BCLAF1 and subsequent evasion of senescence mediated by p53/p21.
Fig. 5: Systemically injected exosomes pre-loaded with inhibitors of miR-181b-5p sensitises the response to DOX in vivo.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  2. Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP. MicroRNA-mediated drug resistance in breast cancer[J]. Clin Epigenetics. 2011;2:171–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression[J]. J Pathol. 2011;223:307–17.

    Article  CAS  PubMed  Google Scholar 

  4. Bonnefoi H, Litiere S, Piccart M, MacGrogan G, Fumoleau P, Brain E, et al. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the EORTC 10994/BIG 1-00 phase III trial[J]. Ann Oncol. 2014;25:1128–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonnefoi H, Jacot W, Saghatchian M, Moldovan C, Venat-Bouvet L, Zaman K, et al. Neoadjuvant treatment with docetaxel plus lapatinib, trastuzumab, or both followed by an anthracycline-based chemotherapy in HER2-positive breast cancer: results of the randomised phase II EORTC 10054 study[J]. Ann Oncol. 2015;26:325–32.

    Article  CAS  PubMed  Google Scholar 

  6. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy[J]. Trends Mol Med. 2014;20:385–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  8. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J]. Nature. 2005;433:769–73.

    Article  CAS  PubMed  Google Scholar 

  9. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels[J]. Nature. 2010;466:835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance[J]. Onco Targets Ther. 2018;11:1529–41.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez-Martinez A, de Miguel-Perez D, Ortega FG, Garcia-Puche JL, Robles-Fernandez I, Exposito J, et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy[J]. Breast Cancer Res. 2019;21:21.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, El-Shinawi M, et al. Inflammatory breast carcinoma: elevated microRNA miR-181b-5p and reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p expression as potential biomarkers with diagnostic value. Biomolecules. 2020;10:1059.

  13. Ouyang M, Li Y, Ye S, Ma J, Lu L, Lv W, et al. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE. 2014;9:e96228.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Andalib A, Rashed S, Dehbashi M, Hajati J, Noorbakhsh F, Ganjalikhani-Hakemi M. The upregulation of hsa-mir-181b-1 and downregulation of its target CYLD in the late-stage of tumor progression of breast cancer. Indian J Clin Biochem. 2020;35:312–21.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed SH, Espinoza-Sanchez NA, El-Damen A, Fahim SA, Badawy MA, Greve B. Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS ONE. 2021;16:e250642.

    Google Scholar 

  16. Hu Y, Yague E, Zhao J, Wang L, Bai J, Yang Q, et al. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett. 2018;423:47–59.

    Article  CAS  PubMed  Google Scholar 

  17. Montalto FI, De Amicis F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma. Cells. 2020,9:2648.

  18. Te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62:1876–83.

    Google Scholar 

  19. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA. 1995;92:9363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.

    Article  CAS  PubMed  Google Scholar 

  21. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113:703–16.

    Article  CAS  PubMed  Google Scholar 

  22. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lappano R, Rigiracciolo DC, Belfiore A, Maggiolini M, De, Francesco EM. Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opin Ther Targets. 2020;24:559–72.

    Article  CAS  PubMed  Google Scholar 

  25. Matei I, Kim HS, Lyden D. Unshielding exosomal RNA unleashes tumor growth and metastasis. Cell. 2017;170:223–5.

    Article  CAS  PubMed  Google Scholar 

  26. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998;58:1408–16.

    CAS  PubMed  Google Scholar 

  27. Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA, et al. Implications of the tumor immune microenvironment for staging and therapeutics. Mod Pathol. 2018;31:214–34.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Q, Zhao S, Shi Z, Cao L, Liu J, Pan T, et al. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J Exp Clin Cancer Res. 2021;40:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu H, Lu ZG, Miki Y, Yoshida K. Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol. 2007;27:8480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarras H, Alizadeh Azami S, McPherson JP. In search of a function for BCLAF1. Sci World J. 2010;10:1450–61.

    Article  CAS  Google Scholar 

  31. Wahlgren J, De L, Karlson T, Brisslert M, Vaziri Sani F, Telemo E, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40:e130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan Q, Ramakrishnaiah V, Henry S, Fouraschen S, de Ruiter PE, Kwekkeboom J, et al. Hepatic cell-to-cell transmission of small silencing RNA can extend the therapeutic reach of RNA interference (RNAi). Gut. 2012;61:1330–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 2011;54:1237–48.

    Article  CAS  PubMed  Google Scholar 

  35. Chiba M, Kimura M, Asari S. Exosomes secreted from human colorectal cancer cell lines contain mRNAs, microRNAs and natural antisense RNAs, that can transfer into the human hepatoma HepG2 and lung cancer A549 cell lines. Oncol Rep. 2012;28:1551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119:756–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao L, Li J, Chen WX, Cai YQ, Yu DD, Zhong SL, et al. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs. Tumour Biol. 2016;37:5247–56.

    Article  CAS  PubMed  Google Scholar 

  38. Yu DD, Wu Y, Zhang XH, Lv MM, Chen WX, Chen X, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol. 2016;37:3227–35.

    Article  CAS  PubMed  Google Scholar 

  39. Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng L, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 2017;16:132.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alharbi M, Zuniga F, Elfeky O, Guanzon D, Lai A, Rice GE, et al. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer. 2018;25:R663–85.

    Article  CAS  PubMed  Google Scholar 

  41. Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J Exp Clin Cancer Res. 2018;37:52.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang M, Qiu R, Yu S, Xu X, Li G, Gu R, et al. Paclitaxelresistant gastric cancer MGC803 cells promote epithelialtomesenchymal transition and chemoresistance in paclitaxelsensitive cells via exosomal delivery of miR1555p. Int J Oncol. 2019;54:326–38.

    CAS  PubMed  Google Scholar 

  43. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen F, Xu B, Li J, Yang X, Gu J, Yao X, et al. Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res. 2021;40:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, et al. Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med. 2021;25:3699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu S, Wang W, Ning Y, Zheng H, Zhan Y, Wang H, et al. Exosome-mediated miR-7-5p delivery enhances the anticancer effect of Everolimus via blocking MNK/eIF4E axis in non-small cell lung cancer. Cell Death Dis. 2022;13:129.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kasof GM, Goyal L, White E. Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol. 1999;19:4390–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McPherson JP, Sarras H, Lemmers B, Tamblyn L, Migon E, Matysiak-Zablocki E, et al. Essential role for Bclaf1 in lung development and immune system function. Cell Death Differ. 2009;16:331–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lamy L, Ngo VN, Emre NC, Shaffer ALRD, Yang Y, Tian E, et al. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell. 2013;23:435–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shao AW, Sun H, Geng Y, Peng Q, Wang P, Chen J, et al. Bclaf1 is an important NF-kappaB signaling transducer and C/EBPbeta regulator in DNA damage-induced senescence. Cell Death Differ. 2016;23:865–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom Clin Appl. 2015;9:358–67.

    Article  CAS  Google Scholar 

  52. Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M. MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther. 2014;7:1327–38.

    PubMed  PubMed Central  Google Scholar 

  53. Fanale D, Taverna S, Russo A, Bazan V. Circular RNA in exosomes. Adv Exp Med Biol. 2018;1087:109–17.

    Article  CAS  PubMed  Google Scholar 

  54. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  CAS  PubMed  Google Scholar 

  55. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012;3:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The Tianjin Science Foundation (No. 19YFZCSY00030 to JZ); The China Scholarship Council Award (No. 202006940028 to TP, No. 201806010012 to JD); Tianjin Municipal Education Research Project (2020KJ136 to SZ); Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-009A); and CRUK Early Detection and Diagnosis Committee Project (No. C1519/A27375 to JMV).

Author information

Authors and Affiliations

Authors

Contributions

SZ, TP, JD and LC have contributed equally to this work. JZ is the corresponding author to this work. Conceptualisation, resources, supervision and project administration were done by JZ; Methodology, software, formal analysis, investigation, data curation and visualisation were done by TP, SZ, JD, LC and GZ. Writing—original draft and writing—review & editing were done by JZ, TP, SZ, JD and LC. JMV, JL and TN reviewed and edited the manuscript. The authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conformed to the principles of the Declaration of Helsinki, and authorised by the Medical Ethics Committee of Tianjin Medical University Cancer Institute and Hospital and Tianjin Medical University Cancer Institute and Hospital Laboratory Animal Care and Use Committee.

Consent for publication

We have obtained consent to publish from the participant to report individual patient data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Agreement of co-authors

Table S1. Breast cancer patient characteristics

Table S2. Sequences used in cell transfection

Supplementary figure legends

Figure S1. Conditioned medium (CM) from doxorubicin-resistant cells suppressed senescence in breast cancer cells.

Figure S2: Uptake of exosomes derived from DOX-resistant cells decreased DOX-induced senescence in breast cancer cells.

41416_2022_2077_MOESM7_ESM.tif

Figure S3. Exosomal miR-181b-5p from DOX-resistant cells is responsible for drug resistance and suppresses cellular senescence.

Figure S4. Exosomal miR-181b-5p induced senescence reduction in recipient cells via downregulation of BCLAF1.

Figure S5. Exosomal miR-181b-5p is related to DOX-resistance in vivo.

Table S3-Cal51vsCALDOX.Differential_analysis_results

Table S4-MCF-7vsMCF-7A02.Differential_analysis_results

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Pan, T., Deng, J. et al. Exosomal transfer of miR-181b-5p confers senescence-mediated doxorubicin resistance via modulating BCLAF1 in breast cancer. Br J Cancer 128, 665–677 (2023). https://doi.org/10.1038/s41416-022-02077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-02077-x

This article is cited by

Search

Quick links