Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Utility of cell-free DNA from bronchial washing fluid in diagnosis and genomic determination for radiology-suspected pulmonary nodules

Abstract

Background

Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer.

Methods

This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes.

Results

BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers.

Conclusions

BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow of samples collection and detection.
Fig. 2: Genomic characteristics of different sample types.
Fig. 3: Genomic discrepancies of different sample types between malignant and non-malignant patients.
Fig. 4: Detection of TDMs in BWF_Sup and BWF_Pre samples.
Fig. 5: TDM detection of cytologically negative BWF.
Fig. 6: Joint clonal analysis of FFPE, BWF_Sup and BWF_Pre.

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are available from the corresponding author on reasonable request.

References

  1. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  2. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  3. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13:239–46.

    Article  CAS  PubMed  Google Scholar 

  4. Lee CK, Davies L, Wu YL, Mitsudomi T, Inoue A, Rosell R, et al. Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: individual patient data meta-analysis of overall survival. J Natl Cancer Inst. 2017;109:djw279.

  5. Lim C, Tsao MS, Le LW, Shepherd FA, Feld R, Burkes RL, et al. Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer. Annal Oncol. 2015;26:1415–21.

    Article  CAS  Google Scholar 

  6. Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc. 2018;93:1649–83.

    Article  PubMed  Google Scholar 

  7. Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: a broad overview. Crit Rev Oncol/Hematol. 2020;155:103109.

    Article  PubMed  Google Scholar 

  8. Schrock AB, Welsh A, Chung JH, Pavlick D, Bernicker EH, Creelan BC, et al. Hybrid capture-based genomic profiling of circulating tumor DNA from patients with advanced non-small cell lung cancer. J Thorac Oncol. 2019;14:255–64.

    Article  CAS  PubMed  Google Scholar 

  9. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2018;36:1631–41.

    Article  CAS  PubMed  Google Scholar 

  11. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  CAS  PubMed  Google Scholar 

  12. Thompson JC, Yee SS, Troxel AB, Savitch SL, Fan R, Balli D, et al. Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res. 2016;22:5772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reckamp KL, Melnikova VO, Karlovich C, Sequist LV, Camidge DR, Wakelee H, et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol. 2016;11:1690–700.

    Article  PubMed  Google Scholar 

  14. De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martínez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shin S, Kim J, Kim Y, Cho SM, Lee KA. Assessment of real-time PCR method for detection of EGFR mutation using both supernatant and cell pellet of malignant pleural effusion samples from non-small-cell lung cancer patients. Clin Chem Lab Med. 2017;55:1962–9.

    Article  CAS  PubMed  Google Scholar 

  16. Li YS, Jiang BY, Yang JJ, Zhang XC, Zhang Z, Ye JY, et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy. Annal Oncol. 2018;29:945–52.

    Article  CAS  Google Scholar 

  17. Zhai J, Han S, Guo Q, Shan B, Wang J, Guo Y, et al. Identifying genomic alterations in small cell lung cancer using the liquid biopsy of bronchial washing fluid. Front Oncol. 2021;11:647216.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ryu JS, Lim JH, Lee MK, Lee SJ, Kim HJ, Kim MJ, et al. Feasibility of bronchial washing fluid-based approach to early-stage lung cancer diagnosis. Oncologist. 2019;24:e603–e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimura H, Kasahara K, Kawaishi M, Kunitoh H, Tamura T, Holloway B, et al. Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res. 2006;12:3915–21.

    Article  CAS  PubMed  Google Scholar 

  20. Nahar R, Zhai W, Zhang T, Takano A, Khng AJ, Lee YY, et al. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat Commun. 2018;9:216.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parikh AR, Leshchiner I, Elagina L, Goyal L, Levovitz C, Siravegna G, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25:1415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin G, Li C, Li PS, Fang WZ, Xu HP, Gong YH, et al. Genomic origin and EGFR-TKI treatments of pulmonary adenosquamous carcinoma. Ann Oncol. 2020;31:517–24.

    Article  CAS  PubMed  Google Scholar 

  23. Chabon JJ, Hamilton EG, Kurtz DM, Esfahani MS, Moding EJ, Stehr H, et al. Integrating genomic features for non-invasive early lung cancer detection. Nature. 2020;580:245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28:1307–13.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mroz EA, Rocco JW. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013;49:211–5.

    Article  CAS  PubMed  Google Scholar 

  28. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11:396–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller RJ, Casal RF, Lazarus DR, Ost DE, Eapen GA. Flexible bronchoscopy. Clin chest Med. 2018;39:1–16.

    Article  PubMed  Google Scholar 

  32. Zhang SJ, Zhang M, Zhou J, Zhang QD, Xu QQ, Xu X. Comparison of radial endobronchial ultrasound with a guide sheath and with distance by thin bronchoscopy for the diagnosis of peripheral pulmonary lesions: a prospective randomized crossover trial. J Thorac Dis. 2016;8:3112–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schmidt B, Carstensen T, Engel E, Jandrig B, Witt C, Fleischhacker M. Detection of cell-free nucleic acids in bronchial lavage fluid supernatants from patients with lung cancer. Eur J Cancer. 2004;40:452–60.

    Article  CAS  PubMed  Google Scholar 

  34. Carstensen T, Schmidt B, Engel E, Jandrig B, Witt C, Fleischhacker M. Detection of cell-free DNA in bronchial lavage fluid supernatants of patients with lung cancer. Ann N. Y Acad Sci. 2004;1022:202–10.

    Article  CAS  PubMed  Google Scholar 

  35. Cardarella S, Ortiz TM, Joshi VA, Butaney M, Jackman DM, Kwiatkowski DJ, et al. The introduction of systematic genomic testing for patients with non-small-cell lung cancer. J Thorac Oncol. 2012;7:1767–74.

    Article  CAS  PubMed  Google Scholar 

  36. Herth FJ, Ernst A, Becker HD. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions. Eur Respiratory J. 2002;20:972–4.

    Article  CAS  Google Scholar 

  37. Guan Y, Hu H, Peng Y, Gong Y, Yi Y, Shao L, et al. Detection of inherited mutations for hereditary cancer using target enrichment and next generation sequencing. Fam Cancer. 2015;14:9–18.

    Article  PubMed  Google Scholar 

  38. Qu S, Chen Q, Yi Y, Shao K, Zhang W, Wang Y, et al. A reference system for BRCA mutation detection based on next-generation sequencing in the Chinese population. J Mol Diagn. 2019;21:677–86.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Yao Y, Xu Y, Li L, Gong Y, Zhang K, et al. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients. Nat Commun. 2021;12:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu X, Wang F, Xu C, Chen X, Hou X, Li Q, et al. Genomic origin and intratumor heterogeneity revealed by sequencing on carcinomatous and sarcomatous components of pulmonary sarcomatoid carcinoma. Oncogene. 2021;40:821–32.

    Article  CAS  PubMed  Google Scholar 

  41. Hu C, Zhao L, Liu W, Fan S, Liu J, Liu Y, et al. Genomic profiles and their associations with TMB, PD-L1 expression, and immune cell infiltration landscapes in synchronous multiple primary lung cancers. J Immunother Cancer. 2021;9:e003773.

  42. Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med. 2010;16:398–406.

    Article  PubMed  Google Scholar 

  43. Pérez-Callejo D, Romero A, Provencio M, Torrente M. Liquid biopsy based biomarkers in non-small cell lung cancer for diagnosis and treatment monitoring. Transl Lung Cancer Res. 2016;5:455–65.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6:479–91.

    Article  PubMed  Google Scholar 

  45. Zhong WZ, Wang Q, Mao WM, Xu ST, Wu L, Shen Y, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 2018;19:139–48.

    Article  CAS  PubMed  Google Scholar 

  46. Harris FR, Kovtun IV, Smadbeck J, Multinu F, Jatoi A, Kosari F, et al. Quantification of somatic chromosomal rearrangements in circulating cell-free DNA from ovarian cancers. Sci Rep. 2016;6:29831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong X, Fernandez-Salas E, Li E, Wang S. Elucidation of resistance mechanisms to second-generation ALK inhibitors alectinib and ceritinib in non-small cell lung cancer cells. Neoplasia. 2016;18:162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Li C, Ye M, Hu Q, Hu J, Gong Z, et al. Bronchial washing fluid versus plasma and bronchoscopy biopsy samples for detecting epidermal growth factor receptor mutation status in lung cancer. Front Oncol. 2021;11:602402.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou C, Yuan Z, Ma W, Qi L, Mahavongtrakul A, Li Y, et al. Clinical utility of tumor genomic profiling in patients with high plasma circulating tumor DNA burden or metabolically active tumors. J Hematol Oncol. 2018;11:129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng D, Ye X, Zhang MZ, Sun Y, Wang JY, Ni J, et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci Rep. 2016;6:20913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tong L, Ding N, Tong X, Li J, Zhang Y, Wang X, et al. Tumor-derived DNA from pleural effusion supernatant as a promising alternative to tumor tissue in genomic profiling of advanced lung cancer. Theranostics. 2019;9:5532–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Prior abstract presentation: Oral presentation, Tumour-derived cell-free DNA from bronchoalveolar lavage fluid (BALF): a potential liquid biopsy analysis in lung cancer patients; April 3, 2019, American Association for Cancer Research (AACR) Annual Meeting, Atlanta, USA.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Xin Zhang is the guarantor of the content of the manuscript, including the data and analysis. Xinyu Zhang and YX had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. ZY, Yencheng Chao, QH, CL, MY, X Zhu, LC, JB, Y Gong, Y Guan, MZ, JH, HZ, TR, QS, KW, YH, XX, DPC and XP contributed substantially to the study design, data analysis and interpretation, and the writing of the manuscript.

Corresponding authors

Correspondence to Xingxiang Pu, David P. Carbone or Xin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the Zhongshan Hospital of Fudan University (No. B2018-027) and complied with all relevant ethical regulations. All participating patients signed written informed consent.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yu, Z., Xu, Y. et al. Utility of cell-free DNA from bronchial washing fluid in diagnosis and genomic determination for radiology-suspected pulmonary nodules. Br J Cancer 127, 2154–2165 (2022). https://doi.org/10.1038/s41416-022-01969-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01969-2

Search

Quick links