Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cellular and Molecular Biology

Extruded small extracellular vesicles: splinters of circulating tumour cells may promote cancer metastasis?

Abstract

We speculate ruptured circulating tumour cells (CTC) in capillaries could release a large number of small extracellular vesicle-like vesicles, namely mechanically extruded sEV (sEVme), which can encapsulate chromosomal DNA fragments. These sEVme have similar physicochemical properties compared to small extracellular vesicles spontaneously secreted by living cells (sEVss), and thus sEVme and sEVss cannot be effectively distinguished based on their size or membrane protein markers. Meanwhile, these sEVme derived from CTC inherit oncogenic payloads, deliver cargo through the bloodstream to recipient cells, and thus may promote cancer metastasis. The validation of this speculation could facilitate our understanding of EV biogenesis and cancer pathology. The potential finding will also provide a theoretical foundation for burgeoning liquid biopsy using DNA fragments derived from harvested sEV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed sEVme generation by CTC.

Similar content being viewed by others

References

  1. Andaloussi SE, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12:347–57.

    Article  Google Scholar 

  2. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    Article  PubMed  Google Scholar 

  3. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Imai T, Takahashi Y, Nishikawa M, Kato K, Morishita M, Yamashita T, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles. 2015;4:26238.

    Article  PubMed  Google Scholar 

  5. Czernek L, Chworos A, Duechler M. The uptake of extracellular vesicles is affected by the differentiation status of myeloid cells. Scand J Immunol. 2015;82:506–14.

    Article  CAS  PubMed  Google Scholar 

  6. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  7. Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, et al. Small extracellular vesicles in cancer. Bioact Mater. 2021;6:3705–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010;117:1–4.

    Article  CAS  PubMed  Google Scholar 

  9. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180.

    Article  PubMed  Google Scholar 

  10. Williams C, Rodriguez-Barrueco R, Silva JM, Zhang WJ, Hearn S, Elemento O, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kahlert C, Melo SA, Protopopov A, Tang JB, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yokoi A, Villar-Prados A, Oliphint PA, Zhang J, Song X, De Hoff P, et al. Mechanisms of nuclear content loading to exosomes. Sci Adv. 2019;5:eaax8849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, et al. Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS ONE. 2016;11:e0163665.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu S, Turner KM, Nguyen N, Raviram R, Erb M, Santini J, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7:e34653.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan Y, Liu B, Lei H, Zhang B, Wang Y, Huang H, et al. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell free DNA for mutation detection in early-stage non-small cell lung cancer. Ann Oncol. 2018;29:2379–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.

    Article  CAS  PubMed  Google Scholar 

  21. Shelke GV, Jang SC, Yin Y, Lässer C, Lötvall J. Human mast cells release extracellular vesicle-associated. DNA Matters. 2016;2:e201602000034.

    Google Scholar 

  22. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177:428–45. e418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 2020;11:584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elzanowska J, Semira C, Costa-Silva B. DNA in extracellular vesicles: biological and clinical aspects. Mol Oncol. 2021;15:1701–14.

    Article  CAS  PubMed  Google Scholar 

  25. Kawamura Y, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci. 2017;108:824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang L, Yang D, Yang Q, Cheng F, Huang Y. Extracellular DNA in blood products and its potential effects on transfusion. Biosci Rep. 2020;40:BSR20192770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plaks V, Koopman CD, Werb Z. Circulating tumor cells. Science. 2013;341:1186–8.

    Article  CAS  PubMed  Google Scholar 

  28. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563.

    Article  CAS  PubMed  Google Scholar 

  29. Xia YQ, Wan Y, Hao SJ, Nisic M, Harouaka RA, Chen YZ, et al. Nucleus of circulating tumor cell determines its translocation through biomimetic microconstrictions and its physical enrichment by microfiltration. Small. 2018;14:e1802899.

    Article  PubMed  Google Scholar 

  30. Weiss L, Orr FW, Honn KV. Interactions of cancer cells with the microvasculature during metastasis. FASEB J. 1988;2:12–21.

    Article  CAS  PubMed  Google Scholar 

  31. Wan Y, Wang L, Zhu C, Zheng Q, Wang G, Tong J, et al. Aptamer-conjugated extracellular nanovesicles for targeted drug delivery. Cancer Res. 2017;78:798–808.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B, et al. Nuclear envelope rupture and repair during cancer cell migration. Science. 2016;352:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raab M, Gentili M, de Belly H, Thiam H-R, Vargas P, Jimenez AJ, et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science. 2016;352:359–62.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang HY, Sun SX. Cellular pressure and volume regulation and implications for cell mechanics. Biophys J. 2013;104:479a–480a.

    Article  Google Scholar 

  35. Apodaca G. Modulation of membrane traffic by mechanical stimuli. Am J Physiol-Ren. 2002;282:F179–F190.

    Article  Google Scholar 

  36. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Bio. 2008;9:112–24.

    Article  Google Scholar 

  37. Ramasubramanian L, Kumar P, Wang A. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules. 2019;10:48.

    Article  PubMed Central  Google Scholar 

  38. Zhao QG, Hai B, Kelly J, Wu S, Liu F. Extracellular vesicle mimics made from iPS cell-derived mesenchymal stem cells improve the treatment of metastatic prostate cancer. Stem Cell Res Ther. 2021;12:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ilahibaks NF, Lei Z, Mol EA, Deshantri AK, Jiang L, Schiffelers RM, et al. Biofabrication of cell-derived nanovesicles: a potential alternative to extracellular vesicles for regenerative medicine. Cells. 2019;8:1509.

    Article  CAS  PubMed Central  Google Scholar 

  40. Huang CC, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, et al. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020;109:182–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Abhange KK, Wen Y, Chen Y, Xue F, Wang G, et al. Preparation of engineered extracellular vesicles derived from human umbilical cord mesenchymal stem cells with ultrasonication for skin rejuvenation. ACS Omega. 2019;4:22638–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Han C, Jeong D, Kim B, Jo W, Kang H, Cho S, et al. Mesenchymal stem cell engineered nanovesicles for accelerated skin wound closure. Acs Biomater Sci Eng. 2019;5:1534–43.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Hu S, Li J, Zhu D, Wang Z, Cores J, et al. Extruded mesenchymal stem cell nanovesicles are equally potent to natural extracellular vesicles in cardiac repair. ACS Appl Mater Interfaces. 2021;13:55767–79.

    Article  CAS  PubMed  Google Scholar 

  44. Jo W, Jeong D, Kim J, Park J. Self-Renewal of bone marrow stem cells by nanovesicles engineered from embryonic stem cells. Adv Health Mater. 2016;5:3148–56.

    Article  CAS  Google Scholar 

  45. Qi CX, Liu XS, Zhi DK, Tai YF, Liu YF, Sun QQ, et al. Exosome-mimicking nanovesicles derived from efficacy-potentiated stem cell membrane and secretome for regeneration of injured tissue. Nano Res. 2022;15:1680–90.

    Article  CAS  Google Scholar 

  46. Fan JB, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Generation of small RNA-modulated exosome mimetics for bone regeneration. ACS Nano. 2020;14:11973–84.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim HY, Bhang SH. Stem cell-engineered nanovesicles exert proangiogenic and neuroprotective effects. Materials. 2021;14:1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia Y-Q, Wan Y, Chen Y-Z, Zheng S-Y. Mechanical generated extracellular vesicles through capillary mimicking micro channels. Biomed Eng Annu Mtg (abstract 314) 2019.

  49. Wen Y, Fu Q, Soliwoda A, Zhang S, Zheng M, Mao W, et al. Cell-derived nanovesicles prepared by membrane extrusion are good substitutes for natural extracellular vesicles. Extracell Vesicle. 2022;1:100004.

    Article  Google Scholar 

  50. Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015;6:7029.

    Article  CAS  PubMed  Google Scholar 

  51. Verweij FJ, Revenu C, Arras G, Dingli F, Loew D, Pegtel DM, et al. Live tracking of inter-organ communication by endogenous exosomes in vivo. Dev Cell. 2019;48:573–89.

    Article  CAS  PubMed  Google Scholar 

  52. Hyenne V, Ghoroghi S, Collot M, Bons J, Follain G, Harlepp S, et al. Studying the fate of tumor extracellular vesicles at high spatiotemporal resolution using the zebrafish embryo. Dev Cell. 2019;48:554–72.

    Article  CAS  PubMed  Google Scholar 

  53. Plebanek MP, Angeloni NL, Vinokour E, Li J, Henkin A, Martinez-Marin D, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun. 2017;8:1–12.

    Article  CAS  Google Scholar 

  54. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016;113:E968–E977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YW and YX wrote the manuscript; YW and SZ edited the manuscript; all authors revised the manuscript critically; all authors approved the version to be published.

Corresponding authors

Correspondence to Yuan Wan or Si-Yang Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Xia, YQ. & Zheng, SY. Extruded small extracellular vesicles: splinters of circulating tumour cells may promote cancer metastasis?. Br J Cancer 127, 1180–1183 (2022). https://doi.org/10.1038/s41416-022-01934-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01934-z

This article is cited by

Search

Quick links