Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Molecular mechanisms by which splice modulator GEX1A inhibits leukaemia development and progression

Abstract

Introduction

Splice modulators have been assessed clinically in treating haematologic malignancies exhibiting splice factor mutations and acute myeloid leukaemia. However, the mechanisms by which such modulators repress leukaemia remain to be elucidated.

Objectives

The primary goal of this assessment was to assess the molecular mechanism by which the natural splice modulator GEX1A kills leukaemic cells in vitro and within in vivo mouse models.

Methods

Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines.

Results

We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types.

Conclusion

Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GEX1A demonstrated potent anti-leukaemic activity in certain cell types as a single-treatment agent in vitro and in vivo.
Fig. 2: GEX1A induces a pro-apoptotic switch in splicing of MCL-1, but not BCL-xL.
Fig. 3: Bcl-xL predicts GEX1A resistance in leukaemic cells.
Fig. 4: GEX1A exhibits strong synergistic anti-leukaemic activity with Bcl-x inhibitors, but antagonised the effect of Bcl-2 inhibitor, in vitro.
Fig. 5: GEX1A induces XPO-1 mediated nuclear exportation of NR4A proteins which can be inhibited by XPO-1 inhibitor selinexor.
Fig. 6: GEX1A + Bcl-xL inhibitor combination additively represses leukaemia development in vivo.
Fig. 7: GEX1A inhibits LSCs by inducing intron retention of the FASTK gene and repressing m-FASTK expression.
Fig. 8: GEX1A represses FLT3-ITD signalling by inducing intron retention in the FLT3-ITD gene.

Similar content being viewed by others

Data availability

RNA sequence data have been submitted to the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO) and is available for public access (GEO Submission GSE166591).

References

  1. Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, et al. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell. 2016;30:849–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125:4017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gbadamosi M, Meshinchi S, Lamba JK. Gemtuzumab ozogamicin for treatment of newly diagnosed CD33-positive acute myeloid leukemia. Future Oncol. 2018;14:3199–213.

  4. Hospital MA, Green AS, Maciel TT, Moura IC, Leung AY, Bouscary D, et al. FLT3 inhibitors: clinical potential in acute myeloid leukemia. OncoTargets Ther. 2017;10:607–15.

    Article  CAS  Google Scholar 

  5. Wu H, Wang A, Qi Z, Li X, Chen C, Yu K, et al. Discovery of a highly potent FLT3 kinase inhibitor for FLT3-ITD-positive AML. Leukemia. 2016;30:2112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roboz GJ, DiNardo CD, Stein EM, de Botton S, Mims AS, Prince GT, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia. Blood. 2020;135:463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Golub D, Iyengar N, Dogra S, Wong T, Bready D, Tang K, et al. Mutant isocitrate dehydrogenase inhibitors as targeted cancer therapeutics. Front Oncol. 2019;9:417.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stein EM. Enasidenib, a targeted inhibitor of mutant IDH2 proteins for treatment of relapsed or refractory acute myeloid leukemia. Future Oncol. 2018;14:23–40.

    Article  CAS  PubMed  Google Scholar 

  9. Quek L, David MD, Kennedy A, Metzner M, Amatangelo M, Shih A, et al. Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib. Nat Med. 2018;24:1167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33:2938–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pui CH, Evans WE. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50:185–96.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375:740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vrooman LM, Silverman LB. Childhood acute lymphoblastic leukemia: update on prognostic factors. Curr Opin Pediatr. 2009;21:1–8.

    Article  PubMed  Google Scholar 

  15. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N. Engl J Med. 2015;373:1136–52.

    Article  PubMed  CAS  Google Scholar 

  16. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129:1577–85.

  17. Pollyea DA, Gutman JA, Gore L, Smith CA, Jordan CT. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica. 2014;99:1277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25:27–36.

    Article  CAS  PubMed  Google Scholar 

  19. Ruefli-Brasse A, Reed JC. Therapeutics targeting Bcl-2 in hematological malignancies. Biochem J. 2017;474:3643–57. 23.

    Article  CAS  PubMed  Google Scholar 

  20. Pierceall WE, Kornblau SM, Carlson NE, Huang X, Blake N, Lena R, et al. BH3 profiling discriminates response to cytarabine-based treatment of acute myelogenous leukemia. Mol Cancer Ther. 2013;12:2940–9.

    Article  CAS  PubMed  Google Scholar 

  21. Grundy M, Seedhouse C, Jones T, Elmi L, Hall M, Graham A, et al. Predicting effective pro-apoptotic anti-leukaemic drug combinations using co-operative dynamic BH3 profiling. PLoS ONE. 2018;13:e0190682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    Article  CAS  PubMed  Google Scholar 

  23. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

  25. Alford SE, Kothari A, Loeff FC, Eichhorn JM, Sakurikar N, Goselink HM, et al. BH3 inhibitor sensitivity and Bcl-2 Dependence in primary acute lymphoblastic leukemia cells. Cancer Res. 2015;75:1366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, et al. Programmed anuclear cell death delimits platelet life span. Cell. 2007;128:1173–86.

    Article  CAS  PubMed  Google Scholar 

  27. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  28. Liu B, Narurkar R, Hanmantgad M, Zafar W, Song Y, Liu D. Venetoclax and low-dose cytarabine induced complete remission in a patient with high-risk acute myeloid leukemia: a case report. Front Med. 2018;12:593–9.

    Article  PubMed  Google Scholar 

  29. Wei AH, Strickland SA, Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol. 2019;37:1277.

  30. Schoenwaelder SM, Jarman KE, Gardiner EE, Hua M, Qiao J, White MJ, et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118:1663–74.

    Article  CAS  PubMed  Google Scholar 

  31. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Warren CFA, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019;10:177.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Visconte V, Makishima H, Maciejewski JP, Tiu RV. Emerging roles of the spliceosomal machinery in myelodysplastic syndromes and other hematological disorders. Leukemia. 2012;26:2447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC, Ramakrishnan A, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell. 2015;27:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ilagan JO, Ramakrishnan A, Hayes B, Murphy ME, Zebari AS, Bradley P, et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 2015;25:14–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Darman RB, Seiler M, Agrawal AA, Lim KH, Peng S, Aird D, et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3’ splice site selection through use of a different branch point. Cell Rep. 2015;13:1033–45.

    Article  CAS  PubMed  Google Scholar 

  38. Caggiano C, Pieraccioli M, Panzeri V, Sette C, Bielli P. c-MYC empowers transcription and productive splicing of the oncogenic splicing factor Sam68 in cancer. Nucleic Acids Res. 2019;47:6160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015;525:384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou Q, Derti A, Ruddy D, Rakiec D, Kao I, Lira M, et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res. 2015;75:1949–58.

    Article  CAS  PubMed  Google Scholar 

  41. Fei DL, Motowski H, Chatrikhi R, Prasad S, Yu J, Gao S, et al. Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival. PLoS Genet. 2016;12:e1006384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, et al. Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun. 2017;8:14060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee SC, Dvinge H, Kim E, Cho H, Micol JB, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22:672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teng T, Tsai JH, Puyang X, Seiler M, Peng S, Prajapati S, et al. Splicing modulators act at the branch point adenosine binding pocket defined by the PHF5A-SF3b complex. Nat Commun. 2017;8:15522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xargay-Torrent S, Lopez-Guerra M, Rosich L, Montraveta A, Roldan J, Rodriguez V, et al. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2015;6:22734–49.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang D, Hu Q, Liu X, Ji Y, Chao HP, Liu Y, et al. Intron retention is a hallmark and spliceosome represents a therapeutic vulnerability in aggressive prostate cancer. Nat Commun. 2020;11:2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aird D, Teng T, Huang CL, Pazolli E, Banka D, Cheung-Ong K, et al. Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nat Commun. 2019;10:137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hong DS, Kurzrock R, Naing A, Wheler JJ, Falchook GS, Schiffman JS, et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Investig N Drugs. 2014;32:436–44.

    Article  CAS  Google Scholar 

  50. Eskens FA, Ramos FJ, Burger H, O’Brien JP, Piera A, de Jonge MJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res. 2013;19:6296–304.

    Article  CAS  PubMed  Google Scholar 

  51. Wu G, Fan L, Edmonson MN, Shaw T, Boggs K, Easton J, et al. Inhibition of SF3B1 by molecules targeting the spliceosome results in massive aberrant exon skipping. RNA. 2018;24:1056–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoshimoto R, Kaida D, Furuno M, Burroughs AM, Noma S, Suzuki H, et al. Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A. RNA. 2017;23:47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol. 2011;6:582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hasegawa M, Miura T, Kuzuya K, Inoue A. Won Ki S, Horinouchi S, et al. Identification of SAP155 as the target of GEX1A (Herboxidiene), an antitumor natural product. ACS Chem Biol. 2011;6:229–33.

    Article  CAS  PubMed  Google Scholar 

  55. Lee Y, Rio DC. Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Granatosky EA, DiPrimio N, Pickering JRE, Stevens DC, Perlstein EO, Taylor RE. GEX1A, a polyketide from streptomyces chromofuscus, corrects the cellular defects associated with Niemann-Pick type C1 in human fibroblasts. J Nat Products. 2018;81:2018–25.

    Article  CAS  Google Scholar 

  57. Moore MJ, Wang Q, Kennedy CJ, Silver PA. An alternative splicing network links cell-cycle control to apoptosis. Cell. 2010;142:625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020;48:W488–W93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13:730–5.

    Article  CAS  PubMed  Google Scholar 

  60. Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA. The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol. 2010;12:1213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science. 2000;289:1159–64.

    Article  CAS  PubMed  Google Scholar 

  62. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004;116:527–40.

    Article  CAS  PubMed  Google Scholar 

  63. Thompson J, Winoto A. During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. J Exp Med. 2008;205:1029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C, et al. Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res. 2009;69:6906–14.

    Article  CAS  PubMed  Google Scholar 

  65. Luciano F, Krajewska M, Ortiz-Rubio P, Krajewski S, Zhai D, Faustin B, et al. Nur77 converts phenotype of Bcl-B, an antiapoptotic protein expressed in plasma cells and myeloma. Blood. 2007;109:3849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Godoi PH, Wilkie-Grantham RP, Hishiki A, Sano R, Matsuzawa Y, Yanagi H, et al. Orphan nuclear receptor NR4A1 binds a novel protein interaction site on anti-apoptotic B cell lymphoma gene 2 family proteins. J Biol Chem. 2016;291:14072–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jourdain AA, Koppen M, Rodley CD, Maundrell K, Gueguen N, Reynier P, et al. A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Rep. 2015;10:1110–21.

    Article  CAS  PubMed  Google Scholar 

  68. Li W, Kedersha N, Chen S, Gilks N, Lee G, Anderson P. FAST is a BCL-X(L)-associated mitochondrial protein. Biochem Biophys Res Commun. 2004;318:95–102.

    Article  CAS  PubMed  Google Scholar 

  69. Grostad M, Rej R, Huseby NE. Mitochondrial aspartate aminotransferase determined by “Fast Protein Liquid Chromatography”. Clin Chem. 1990;36:348–50.

    Article  CAS  PubMed  Google Scholar 

  70. Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, Lopez A, et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 2019;9:890–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Almeida MJ, Luchsinger LL, Corrigan DJ, Williams LJ, Snoeck HW. Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell. 2017;21:725–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pei S, Minhajuddin M, Adane B, Khan N, Stevens BM, Mack SC, et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell. 2018;23:86–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rioux N, Smith S, Colombo F, Kim A, Lai WG, Nix D, et al. Metabolic disposition of H3B-8800, an orally available small-molecule splicing modulator, in rats, monkeys, and humans. Xenobiotica. 2020;50:1–14.

  74. Effenberger KA, Urabe VK, Jurica MS. Modulating splicing with small molecular inhibitors of the spliceosome. Wiley Interdisciplinary Rev RNA. 2017;8:e1381.

  75. Lopez AG, Allu SR, Mendez P, Reddy GC, Maul-Newby HM, Ghosh AK, et al. Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. ACS Chem Biol. 2021;16:520–8.

    Article  PubMed Central  CAS  Google Scholar 

  76. Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, et al. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer. 2017;17:399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sciarrillo R, Wojtuszkiewicz A, El Hassouni B, Funel N, Gandellini P, Lagerweij T, et al. Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma. EBioMedicine 2019;39:215–25.

    Article  PubMed  Google Scholar 

  78. Vogler M, Hamali HA, Sun XM, Bampton ET, Dinsdale D, Snowden RT, et al. BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood. 2011;117:7145–54.

    Article  CAS  PubMed  Google Scholar 

  79. Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, et al. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med. 2019;25:1938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Larrayoz M, Blakemore SJ, Dobson RC, Blunt MD, Rose-Zerilli MJ, Walewska R, et al. The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1. Leukemia. 2016;30:351–60.

    Article  CAS  PubMed  Google Scholar 

  81. Hird AW, Tron AE. Recent advances in the development of Mcl-1 inhibitors for cancer therapy. Pharmacol Therapeutics. 2019;198:59–67.

    Article  CAS  Google Scholar 

  82. Tron AE, Belmonte MA, Adam A, Aquila BM, Boise LH, Chiarparin E, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Caenepeel S, Brown SP, Belmontes B, Moody G, Keegan KS, Chui D, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018;8:1582–97.

    Article  CAS  PubMed  Google Scholar 

  84. Moujalled DM, Pomilio G, Ghiurau C, Ivey A, Salmon J, Rijal S, et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia. 2018;33:905–17.

  85. Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Imaizumi T, Nakagawa H, Hori R, Watanabe Y, Soga S, Iida K, et al. The synthesis and evaluation of the antiproliferative activity of deacidified GEX1A analogues. J Antibiotics. 2017;70:675–9.

    Article  CAS  Google Scholar 

  87. Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM. Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood. 2011;117:2681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kolluri SK, Zhu X, Zhou X, Lin B, Chen Y, Sun K, et al. A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell. 2008;14:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thompson J, Burger ML, Whang H, Winoto A. Protein kinase C regulates mitochondrial targeting of Nur77 and its family member Nor-1 in thymocytes undergoing apoptosis. Eur J Immunol. 2010;40:2041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu S, Yu H, Kumar SM, Martin JS, Bing Z, Sheng W, et al. Norcantharidin induces melanoma cell apoptosis through activation of TR3 dependent pathway. Cancer Biol Ther. 2011;12:1005–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang A, Rud J, Olson CM Jr, Anguita J, Osborne BA. Phosphorylation of Nur77 by the MEK-ERK-RSK cascade induces mitochondrial translocation and apoptosis in T cells. J Immunol. 2009;183:3268–77.

    Article  CAS  PubMed  Google Scholar 

  92. Moll UM, Marchenko N, Zhang XK. p53 and Nur77/TR3—transcription factors that directly target mitochondria for cell death induction. Oncogene. 2006;25:4725–43.

    Article  CAS  PubMed  Google Scholar 

  93. Liu J, Wang GH, Duan YH, Dai Y, Bao Y, Hu M, et al. Modulation of the Nur77-Bcl-2 apoptotic pathway by p38alpha MAPK. Oncotarget. 2017;8:69731–45.

    Article  PubMed  PubMed Central  Google Scholar 

  94. De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, et al. Bcl-2 phosphorylation by p38 MAPK: identification of target sites and biologic consequences. J Biol Chem. 2006;281:21353–61.

    Article  PubMed  CAS  Google Scholar 

  95. Torcia M, De Chiara G, Nencioni L, Ammendola S, Labardi D, Lucibello M, et al. Nerve growth factor inhibits apoptosis in memory B lymphocytes via inactivation of p38 MAPK, prevention of Bcl-2 phosphorylation, and cytochrome c release. J Biol Chem. 2001;276:39027–36.

    Article  CAS  PubMed  Google Scholar 

  96. Ishikawa Y, Kusaka E, Enokido Y, Ikeuchi T, Hatanaka H. Regulation of Bax translocation through phosphorylation at Ser-70 of Bcl-2 by MAP kinase in NO-induced neuronal apoptosis. Mol Cell Neurosci. 2003;24:451–9.

    Article  CAS  PubMed  Google Scholar 

  97. Kim HJ, Kim JY, Lee SJ, Kim HJ, Oh CJ, Choi YK, et al. alpha-Lipoic acid prevents neointimal hyperplasia via induction of p38 mitogen-activated protein kinase/Nur77-mediated apoptosis of vascular smooth muscle cells and accelerates postinjury reendothelialization. Arterioscler Thromb Vasc Biol. 2010;30:2164–72.

    Article  CAS  PubMed  Google Scholar 

  98. Chen X, Cao X, Tu X, Alitongbieke G, Xia Z, Li X, et al. BI1071, a novel Nur77 Modulator, induces apoptosis of cancer cells by activating the Nur77-Bcl-2 apoptotic pathway. Mol Cancer Ther. 2019;18:886–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tian Q, Taupin J, Elledge S, Robertson M, Anderson P. Fas-activated serine/threonine kinase (FAST) phosphorylates TIA-1 during Fas-mediated apoptosis. J Exp Med. 1995;182:865–74.

    Article  CAS  PubMed  Google Scholar 

  100. Li W, Simarro M, Kedersha N, Anderson P. FAST is a survival protein that senses mitochondrial stress and modulates TIA-1-regulated changes in protein expression. Mol Cell Biol. 2004;24:10718–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Izquierdo JM, Valcarcel J. Fas-activated serine/threonine kinase (FAST K) synergizes with TIA-1/TIAR proteins to regulate Fas alternative splicing. J Biol Chem. 2007;282:1539–43.

    Article  CAS  PubMed  Google Scholar 

  102. Simarro M, Mauger D, Rhee K, Pujana MA, Kedersha NL, Yamasaki S, et al. Fas-activated serine/threonine phosphoprotein (FAST) is a regulator of alternative splicing. Proc Natl Acad Sci USA. 2007;104:11370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li W, Ivanov P, Anderson P. Fas-activated Ser/Thr phosphoprotein (FAST) is a eukaryotic initiation factor 4E-binding protein that regulates mRNA stability and cell survival. Translation. 2013;1:e24047.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Antonicka H, Shoubridge EA. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep. 2015;10:920–32.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang J, Seet CS, Sun C, Li J, You D, Volk A, et al. p27 maintains a subset of leukemia stem cells in the quiescent state in murine MLL-leukemia. Mol Oncol. 2013;7:1069–82.

Download references

Acknowledgements

The authors thank the staff of the Department of Comparative Medicine of Loyola University Medical Center for the excellent animal care services they provided. We appreciate laboratory support in the form of FACS sorting and analysis assistance by Patricia Simms.

Funding

This work was supported by NIH grants R01 HL133560-01 and R01 CA223194-01 through Loyola University Chicago, as well as Loyola programme development funds to Jiwang Zhang. This work was also partially supported by a grant from the National Institutes of General Medical Sciences (R01-GM129465), as well as the Walther Cancer Foundation through the Harper Cancer Research Institute at the University of Notre Dame.

Author information

Authors and Affiliations

Authors

Contributions

MS, RM, MR and KJ, LZ, SL, SB, WW, PL, PB and JZ conducted the experiments and analysed the data. MS drafted the first version of the paper. PB, RT and JZ contributed to the writing and editing of this manuscript.

Corresponding authors

Correspondence to Richard E. Taylor or Jiwang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellin, M., Mack, R., Rhodes, M.C. et al. Molecular mechanisms by which splice modulator GEX1A inhibits leukaemia development and progression. Br J Cancer 127, 223–236 (2022). https://doi.org/10.1038/s41416-022-01796-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01796-5

Search

Quick links