Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Low miR-10b-3p associated with sorafenib resistance in hepatocellular carcinoma

Abstract

Background

Sorafenib is one of the standard first-line therapies for advanced hepatocellular carcinoma (HCC). Unfortunately, there are currently no appropriate biomarkers to predict the clinical efficacy of sorafenib in HCC patients. MicroRNAs (miRNAs) have been studied for their biological functions and clinical applications in human cancers.

Methods

In this study, we found that miR-10b-3p expression was suppressed in sorafenib-resistant HCC cell lines through miRNA microarray analysis.

Results

Sorafenib-induced apoptosis in HCC cells was significantly enhanced by miR-10b-3p overexpression and partially abrogated by miR-10b-3p depletion. Among 45 patients who received sorafenib for advanced HCC, those with high miR-10b-3p levels, compared to those with low levels, exhibited significantly longer overall survival (OS) (median, 13.9 vs. 3.5 months, pā€‰=ā€‰0.021), suggesting that high serum miR-10b-3p level in patients treated with sorafenib for advanced HCC serves as a biomarker for predicting sorafenib efficacy. Furthermore, we confirmed that cyclin E1, a known promoter of sorafenib resistance reported by our previous study, is the downstream target for miR-10b-3p in HCC cells.

Conclusions

This study not only identified the molecular target for miR-10b-3p, but also provided evidence that circulating miR-10b-3p may be used as a biomarker for predicting sorafenib sensitivity in patients with HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-10b-3p as a predictive biomarker of response to sorafenib treatment in HCC cell lines in vitro and in vivo.
Fig. 2: Expression of miR-10b-3p was induced by sorafenib in HCC cells.
Fig. 3: Expression of miR-10b-3p was associated with better prognosis of HCC patients.
Fig. 4: Expression of miR-10b-3p sensitizes HCC cells in response to sorafenib treatment.
Fig. 5: miR-10b-3p was a possible mediator of sorafenib efficacy through down-regulation of cyclin E1 in HCC cell lines.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, et al. Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer. 2019;18:105.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Liu X, Chen D, Chen H, Wang W, Liu Y, Wang Y, et al. YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. Cancer Commun. 2021. https://doi.org/10.1002/cac2.12164

    ArticleĀ  Google ScholarĀ 

  3. Komoll RM, Hu Q, Olarewaju O, von Dohlen L, Yuan Q, Xie Y, et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol. 2021;74:122ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Chen Y, Buyel JJ, Hanssen MJ, Siegel F, Pan R, Naumann J, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun. 2016;7:11420.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  5. Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015;113:275ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Xu L, Beckebaum S, Iacob S, Wu G, Kaiser GM, Radtke A, et al. MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. J Hepatol. 2014;60:590ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 2012;22:125ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Bai X, Liu Z, Shao X, Wang D, Dong E, Wang Y, et al. The heterogeneity of plasma miRNA profiles in hepatocellular carcinoma patients and the exploration of diagnostic circulating miRNAs for hepatocellular carcinoma. PLoS One. 2019;14:e0211581.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Brase JC, Wuttig D, Kuner R, Sultmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer. 2010;9:306.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Shi Y, Zhang DD, Liu JB, Yang XL, Xin R, Jia CY, et al. Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. Mol Ther Nucleic Acids. 2021;23:702ā€“18.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Hung CH, Hu TH, Lu SN, Kuo FY, Chen CH, Wang JH, et al. Circulating microRNAs as biomarkers for diagnosis of early hepatocellular carcinoma associated with hepatitis B virus. Int J Cancer. 2016;138:714ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Lin XJ, Chong Y, Guo ZW, Xie C, Yang XJ, Zhang Q, et al. A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. Lancet Oncol. 2015;16:804ā€“15.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Parpart S, Roessler S, Dong F, Rao V, Takai A, Ji J, et al. Modulation of miR-29 expression by alpha-fetoprotein is linked to the hepatocellular carcinoma epigenome. Hepatology. 2014;60:872ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Zanutto S, Ciniselli CM, Belfiore A, Lecchi M, Masci E, Delconte G, et al. Plasma miRNA-based signatures in CRC screening programs. Int J Cancer. 2020;146:1164ā€“73.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Lu X, Lu J, Wang S, Zhang Y, Ding Y, Shen X, et al. Circulating serum exosomal miR-92a-3p as a novel biomarker for early diagnosis of gastric cancer. Future Oncol. 2021;17:907ā€“19.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28:1721ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  17. Kleivi Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Borresen-Dale AL, et al. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res. 2015;21:1207ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Sheedy P, Medarova Z. The fundamental role of miR-10b in metastatic cancer. Am J cancer Res. 2018;8:1674ā€“88.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Guan L, Ji D, Liang N, Li S, Sun B. Up-regulation of miR-10b-3p promotes the progression of hepatocellular carcinoma cells via targeting CMTM5. J Cell Mol Med. 2018;22:3434ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011;29:4781ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Kanthaje S, Makol A, Chakraborti A. Sorafenib response in hepatocellular carcinoma: MicroRNAs as tuning forks. Hepatol Res. 2018;48:5ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Azumi J, Tsubota T, Sakabe T, Shiota G. miR-181a induces sorafenib resistance of hepatocellular carcinoma cells through downregulation of RASSF1 expression. Cancer Sci. 2016;107:1256ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Fornari F, Pollutri D, Patrizi C, La Bella T, Marinelli S, Casadei Gardini A, et al. In hepatocellular carcinoma miR-221 modulates sorafenib resistance through inhibition of caspase-3-mediated apoptosis. Clin Cancer Res. 2017;23:3953ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Gramantieri L, Pollutri D, Gagliardi M, Giovannini C, Quarta S, Ferracin M, et al. MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma. Cancer Res. 2020;80:1720ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. He C, Dong X, Zhai B, Jiang X, Dong D, Li B, et al. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget. 2015;6:28867ā€“81.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Nishida N, Arizumi T, Hagiwara S, Ida H, Sakurai T, Kudo M. MicroRNAs for the prediction of early response to sorafenib treatment in human hepatocellular carcinoma. Liver Cancer. 2017;6:113ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Tan W, Lin Z, Chen X, Li W, Zhu S, Wei Y, et al. miR-126-3p contributes to sorafenib resistance in hepatocellular carcinoma via downregulating SPRED1. Ann Transl Med. 2021;9:38.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Weng H, Zeng L, Cao L, Chen T, Li Y, Xu Y, et al. circFOXM1 contributes to sorafenib resistance of hepatocellular carcinoma cells by regulating MECP2 via miR-1324. Mol Ther Nucleic Acids. 2021;23:811ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Xu Y, Huang J, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett. 2016;371:171ā€“81.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Zhao W, Ma B, Tian Z, Han H, Tang J, Dong B, et al. Inhibiting CBX4 efficiently protects hepatocellular carcinoma cells against sorafenib resistance. Br J Cancer. 2021;124:1237ā€“48.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Ouyang H, Gore J, Deitz S, Korc M. microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-beta actions. Oncogene. 2014;33:4664ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Zhang P, Hong H, Sun X, Jiang H, Ma S, Zhao S, et al. MicroRNA-10b regulates epithelial-mesenchymal transition by modulating KLF4/Notch1/E-cadherin in cisplatin-resistant nasopharyngeal carcinoma cells. Am J Cancer Res. 2016;6:141ā€“56.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Monroig-Bosque PdC, Shah MY, Fu X, Fuentes-Mattei E, Ling H, Ivan C, et al. OncomiR-10b hijacks the small molecule inhibitor linifanib in human cancers. Sci Rep. 2018;8:13106.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Khalighfard S, Alizadeh AM, Irani S, Omranipour R. Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci Rep. 2018;8:17981.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Zhu Q, Gong L, Wang J, Tu Q, Yao L, Zhang J-R, et al. miR-10b exerts oncogenic activity in human hepatocellular carcinoma cells by targeting expression of CUB and sushi multiple domains 1 (CSMD1). BMC Cancer. 2016;16:806ā€“806.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Hsu C, Lin LI, Cheng YC, Feng ZR, Shao YY, Cheng AL, et al. Cyclin E1 inhibition can overcome sorafenib resistance in hepatocellular carcinoma cells through Mcl-1 suppression. Clin Cancer Res. 2016;22:2555ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Lai HH, Li CW, Hong CC, Sun HY, Chiu CF, Ou DL, et al. TARBP2-mediated destabilization of Nanog overcomes sorafenib resistance in hepatocellular carcinoma. Mol Oncol. 2019;13:928ā€“45.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Ou DL, Shen YC, Yu SL, Chen KF, Yeh PY, Fan HH, et al. Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2010;70:9309ā€“18.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68:723ā€“50.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. Ma L. Role of miR-10b in breast cancer metastasis. Breast Cancer Res. 2010;12:210.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Li QJ, Zhou L, Yang F, Wang GX, Zheng H, Wang DS, et al. MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumour Biol. 2012;33:1455ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Biagioni F, Bossel Ben-Moshe N, Fontemaggi G, Canu V, Mori F, Antoniani B, et al. miR-10b*, a master inhibitor of the cell cycle, is down-regulated in human breast tumours. EMBO Mol Med. 2012;4:1214ā€“29.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Calkins KL, Thamotharan S, Ghosh S, Dai Y, Devaskar SU. MicroRNA 122 reflects liver injury in children with intestinal failure-associated liver disease treated with intravenous fish oil. J Nutr. 2020;150:1144ā€“50.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev. 2015;81:62ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Vasuri F, Visani M, Acquaviva G, Brand T, Fiorentino M, Pession A, et al. Role of microRNAs in the main molecular pathways of hepatocellular carcinoma. World J Gastroenterol. 2018;24:2647ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Marisi G, Cucchetti A, Ulivi P, Canale M, Cabibbo G, Solaini L, et al. Ten years of sorafenib in hepatocellular carcinoma: Are there any predictive and/or prognostic markers? World J Gastroenterol. 2018;24:4152ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, et al. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol. 2015;21:12042ā€“58.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Li LM, Hu ZB, Zhou ZX, Chen X, Liu FY, Zhang JF, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798ā€“807.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Xiang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J, et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. 2014;454:210ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Nagy Ɓ, LĆ”nczky A, MenyhĆ”rt O, Győrffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8:9227.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Acknowledgements

This work was financially supported by the Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei, Taiwan. The authors thank the National Center for High-performance Computing for computer time and facilities as well as the second Core Lab, Department of Medical Research, National Taiwan University Hospital for providing laboratory facilities. D-LO was supported by National Taiwan University YongLin Institute of Health Scholar.

Funding

This study was supported by the following research grants: NTU-109L901403, NTU- 110L901404 (from Ministry of Education, Taiwan), MOST 106-2314-B-002-229-MY3, MOST 107-3017-F-002-002, MOST 107-2314-B-002-210-MY3, MOST 108-2314-B-002-075-MY3, MOST 108-3017-F-002-004, MOST 109-2634-F-002-043, 109-2314-B-002 -229 -MY3, MOST 110-2634-F-002-044 (from Ministry of Science and Technology, Taiwan), YongLin Chair Grant S-01, (from National Taiwan University), UN108-010, UN109-051 (from National Taiwan University Hospital).

Author information

Authors and Affiliations

Authors

Contributions

Y-YS and P-SC contributed equally to this work. Study concept and design: D-LO, CH; Methodology and technical support: Y-YS, P-SC, B-SL, and D-LO; Analysis and interpretation of data: Y-YS, P-SC, LL, AL, CH, and D-LO; Writing, review, and/or revision of the manuscript: Y-YS, P-SC, and D-LO; Study supervision: A-LC and CH.

Corresponding author

Correspondence to Da-Liang Ou.

Ethics declarations

Competing interests

A-LC is a consultant for and a member of the speakerā€™s bureau of Bayer-Schering Pharma. A-LC is a consultant of Novartis, Merck Serono, Eisai, Merck Sharp & Dohme (MSD) Corp., ONXEO, Bayer HealthCare Pharmaceuticals Inc., Bristol-Myers Squibb (BMS) Company, and Ono Pharmaceutical Co., Ltd. A-LC is an Associate Editor of Liver Cancer. CH received research grants from BMS/ONO, Roche, and Ipsen and received honorarium from the following pharmaceutical companies: AstraZeneca, Bayer, BMS/ONO, Eisai, Eli Lilly, Ipsen, Merck Serono, MSD, Novartis, Roche, TTY Biopharm.

Ethics approval and consent to participate

The protocol for the in vivo studies was approved by the Institutional Animal Care and Use Committee of the College of Medicine, National Taiwan University (No. 20130360). All the animal studies were performed according to the criteria outlined in the Guide for the Care and Use of Laboratory Animals prepared by the National Academy of Sciences and published by the National Institutes of Health. We enrolled patients who received sorafenib as the first-line therapy for advanced HCC at NTUH. This study was approved by the Institute Research Ethical Committee of NTUH (No. 201401040RIND).

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, YY., Chen, PS., Lin, LI. et al. Low miR-10b-3p associated with sorafenib resistance in hepatocellular carcinoma. Br J Cancer 126, 1806ā€“1814 (2022). https://doi.org/10.1038/s41416-022-01759-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01759-w

This article is cited by

Search

Quick links