Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

A blood-based noninvasive miRNA signature for predicting survival outcomes in patients with intrahepatic cholangiocarcinoma

Abstract

Background

The prognosis in patients with intrahepatic cholangiocarcinoma (ICC) is generally poor. To improve treatment selection, we sought to identify microRNA (miRNA) signature associated with survival outcomes in ICC.

Methods

We first analysed the miRNA expression profiles of primary ICC from two public datasets to identify a miRNA panel to detect patients for short-term survival. We then analysed 309 specimens, including 241 FFPE samples from two clinical cohorts (training: n = 177; validation: n = 64) and matched plasma samples (n = 68), and developed a risk-stratification model incorporating the panel and CA 19-9 levels to predict survival outcomes in ICC.

Results

We identified a 7-miRNA panel that robustly classified patients with poor outcomes in the discovery cohorts (AUC = 0.80 and 0.88, respectively). We subsequently trained this miRNA panel in a clinical cohort (AUC = 0.83) and evaluated its performance in an independent validation cohort (AUC = 0.82) and plasma samples from the additional validation cohort (AUC = 0.78). Patients in both clinical cohorts who were classified as high-risk had significantly worse prognosis (p < 0.01). The risk-stratification model demonstrated superior performance compared to models (AUC = 0.85).

Conclusions

We established a novel miRNA signature that could robustly predict survival outcomes in resected tissues and liquid biopsies to improve the clinical management of patients with ICC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genome-wide discovery and validation of a novel 7-miRNA panel to detect patients with ICC at high risk for short-term survival.
Fig. 2: Training and validation of the panel for identifying survival outcomes in patients with ICC.
Fig. 3: Validation of the panel in clinical plasma samples and the establishment of a final risk-stratification model for patients with ICC.

Similar content being viewed by others

Data availability

TCGA miRNA expression profiling data were downloaded from the University of California, Santa Cruz Xena Browser (https://xenabrowser.net). Normalised non-coding RNA profiling and clinical data from the GSE53870 dataset were downloaded from the Gene Expression Omnibus database.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68:394–424.

    Google Scholar 

  2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  3. Petrick JL, Braunlin M, Laversanne M, Valery PC, Bray F, McGlynn KA. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int J Cancer. 2016;139:1534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benson AB, D’Angelica MI, Abbott DE, Abrams TA, Alberts SR, Anaya DA, et al. Guidelines insights: hepatobiliary cancers, Version 2.2019. J Natl Compr Cancer Netw. 2019;17:302–10.

    Article  CAS  Google Scholar 

  5. Farges O, Fuks D, Boleslawski E, Le Treut YP, Castaing D, Laurent A, et al. Influence of surgical margins on outcome in patients with intrahepatic cholangiocarcinoma: a multicenter study by the AFC-IHCC-2009 study group. Ann Surg. 2011;254:824–29. discussion 30

    Article  PubMed  Google Scholar 

  6. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg. 2014;149:565–74.

    Article  PubMed  Google Scholar 

  7. Nathan H, Pawlik TM, Wolfgang CL, Choti MA, Cameron JL, Schulick RD. Trends in survival after surgery for cholangiocarcinoma: a 30-year population-based SEER database analysis. J Gastrointest Surg. 2007;11:1488–96. discussion 96–7.

    Article  PubMed  Google Scholar 

  8. Hyder O, Hatzaras I, Sotiropoulos GC, Paul A, Alexandrescu S, Marques H, et al. Recurrence after operative management of intrahepatic cholangiocarcinoma. Surgery. 2013;153:811–8.

    Article  PubMed  Google Scholar 

  9. Spolverato G, Kim Y, Alexandrescu S, Marques HP, Lamelas J, Aldrighetti L, et al. Management and outcomes of patients with recurrent intrahepatic cholangiocarcinoma following previous curative-intent surgical resection. Ann surgical Oncol. 2016;23:235–43.

    Article  Google Scholar 

  10. Sulpice L, Rayar M, Boucher E, Pracht M, Meunier B, Boudjema K. Treatment of recurrent intrahepatic cholangiocarcinoma. Br J Surg. 2012;99:1711–7.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang XF, Beal EW, Bagante F, Chakedis J, Weiss M, Popescu I, et al. Early versus late recurrence of intrahepatic cholangiocarcinoma after resection with curative intent. Br J Surg. 2018;105:848–56.

    Article  PubMed  Google Scholar 

  12. Squires MH, Cloyd JM, Dillhoff M, Schmidt C, Pawlik TM. Challenges of surgical management of intrahepatic cholangiocarcinoma. Expert Rev Gastroenterol Hepatol. 2018;12:671–81.

    Article  CAS  PubMed  Google Scholar 

  13. Cillo U, Fondevila C, Donadon M, Gringeri E, Mocchegiani F, Schlitt HJ, et al. Surgery for cholangiocarcinoma. Liver Int. 2019;39:143–55.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Halazun KJ, Najjar M, Abdelmessih RM, Samstein B, Griesemer AD, Guarrera JV, et al. Recurrence after liver transplantation for hepatocellular carcinoma: a new MORAL to the story. Ann Surg. 2017;265:557–64.

    Article  PubMed  Google Scholar 

  15. Malik HZ, Prasad KR, Halazun KJ, Aldoori A, Al-Mukhtar A, Gomez D, et al. Preoperative prognostic score for predicting survival after hepatic resection for colorectal liver metastases. Ann Surg. 2007;246:806–14.

    Article  PubMed  Google Scholar 

  16. Buettner S, Galjart B, van Vugt JLA, Bagante F, Alexandrescu S, Marques HP, et al. Performance of prognostic scores and staging systems in predicting long-term survival outcomes after surgery for intrahepatic cholangiocarcinoma. J Surg Oncol. 2017;116:1085–95.

    Article  CAS  PubMed  Google Scholar 

  17. Burkhart RA, Pawlik TM. Staging and prognostic models for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017;24:1073274817729235.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim Y, Moris DP, Zhang XF, Bagante F, Spolverato G, Schmidt C, et al. Evaluation of the 8th edition American Joint Commission on Cancer (AJCC) staging system for patients with intrahepatic cholangiocarcinoma: a surveillance, epidemiology, and end results (SEER) analysis. J Surg Oncol. 2017;116:643–50.

    Article  PubMed  Google Scholar 

  19. Meng ZW, Pan W, Hong HJ, Chen JZ, Chen YL. Modified staging classification for intrahepatic cholangiocarcinoma based on the sixth and seventh editions of the AJCC/UICC TNM staging systems. Medicine. 2017;96:e7891.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang K, Zhang H, Xia Y, Liu J, Shen F. Surgical options for intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2017;6:79–90.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  22. Kanaan Z, Rai SN, Eichenberger MR, Roberts H, Keskey B, Pan J, et al. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256:544–51.

    Article  PubMed  Google Scholar 

  23. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.

    Article  CAS  PubMed  Google Scholar 

  24. Hur K, Toiyama Y, Okugawa Y, Ide S, Imaoka H, Boland CR, et al. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut. 2017;66:654–65.

    Article  CAS  PubMed  Google Scholar 

  25. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259:735–43.

    Article  PubMed  Google Scholar 

  26. Toiyama Y, Takahashi M, Hur K, Nagasaka T, Tanaka K, Inoue Y, et al. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst. 2013;105:849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan KM, Tsai CY, Yeh CN, Yeh TS, Lee WC, Jan YY, et al. Characterization of intrahepatic cholangiocarcinoma after curative resection: outcome, prognostic factor, and recurrence. BMC Gastroenterol. 2018;18:180.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waisberg DR, Pinheiro RS, Nacif LS, Rocha-Santos V, Martino RB, Arantes RM, et al. Resection for intrahepatic cholangiocellular cancer: new advances. Transl Gastroenterol Hepatol. 2018;3:60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang H, Wang J, Li Z, Yang Y, Yang L, Zhang Y, et al. Risk factors and outcomes of early relapse after curative resection of intrahepatic cholangiocarcinoma. Front Oncol. 2019;9:854.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fruscione M, Pickens RC, Baker EH, Martinie JB, Iannitti DA, Hwang JJ, et al. Conversion therapy for intrahepatic cholangiocarcinoma and tumor downsizing to increase resection rates: a systematic review. Curr Probl Cancer. 2021;45:100614.

  31. Le Roy B, Gelli M, Pittau G, Allard MA, Pereira B, Serji B, et al. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br J Surg. 2018;105:839–47.

    Article  PubMed  Google Scholar 

  32. Wu L, Tsilimigras DI, Farooq A, Hyer JM, Merath K, Paredes AZ, et al. Potential survival benefit of radiofrequency ablation for small solitary intrahepatic cholangiocarcinoma in nonsurgically managed patients: a population-based analysis. J Surg Oncol. 2019;120:1358–64.

    Article  CAS  PubMed  Google Scholar 

  33. Xiang X, Hu D, Jin Z, Liu P, Lin H. Radiofrequency ablation vs. surgical resection for small early-stage primary intrahepatic cholangiocarcinoma. Front Oncol. 2020;10:540662.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ma KW, Cheung TT, Leung B, She BWH, Chok KSH, Chan ACY, et al. Adjuvant chemotherapy improves oncological outcomes of resectable intrahepatic cholangiocarcinoma: a meta-analysis. Medicine. 2019;98:e14013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shroff RT, Kennedy EB, Bachini M, Bekaii-Saab T, Crane C, Edeline J, et al. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline. J Clin Oncol. 2019;37:1015–27.

    Article  PubMed  Google Scholar 

  36. Wang ML, Ke ZY, Yin S, Liu CH, Huang Q. The effect of adjuvant chemotherapy in resectable cholangiocarcinoma: A meta-analysis and systematic review. Hepatobiliary Pancreat Dis Int. 2019;18:110–6.

    Article  PubMed  Google Scholar 

  37. Merath K, Chen Q, Bagante F, Alexandrescu S, Marques HP, Aldrighetti L, et al. A multi-institutional international analysis of textbook outcomes among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma. JAMA Surg. 2019;154:e190571.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yadav S, Xie H, Bin-Riaz I, Sharma P, Durani U, Goyal G, et al. Neoadjuvant vs. adjuvant chemotherapy for cholangiocarcinoma: a propensity score matched analysis. Eur J Surgical Oncol. 2019;45:1432–8.

    Article  Google Scholar 

  39. Lin YK, Hsieh MC, Wang WW, Lin YC, Chang WW, Chang CL, et al. Outcomes of adjuvant treatments for resectable intrahepatic cholangiocarcinoma: Chemotherapy alone, sequential chemoradiotherapy, or concurrent chemoradiotherapy. Radiother Oncol. 2018;128:575–83.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang XF, Bagante F, Chakedis J, Moris D, Beal EW, Weiss M, et al. Perioperative and long-term outcome for intrahepatic cholangiocarcinoma: impact of major versus minor hepatectomy. J Gastrointest Surg. 2017;21:1841–50.

    Article  PubMed  Google Scholar 

  41. Poruk KE, Pawlik TM, Weiss MJ. Perioperative management of hilar cholangiocarcinoma. J Gastrointest Surg. 2015;19:1889–99.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Buettner S, Koerkamp BG, Ejaz A, Buisman FE, Kim Y, Margonis GA, et al. The effect of preoperative chemotherapy treatment in surgically treated intrahepatic cholangiocarcinoma patients-A multi-institutional analysis. J Surg Oncol. 2017;115:312–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang MY, Li SH, Huang GL, Lin GH, Shuang ZY, Lao XM, et al. Identification of a novel microRNA signature associated with intrahepatic cholangiocarcinoma (ICC) patient prognosis. BMC Cancer. 2015;15:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yao Y, Jiao D, Liu Z, Chen J, Zhou X, Li Z, et al. Novel miRNA predicts survival and prognosis of cholangiocarcinoma based on RNA-seq data and in vitro experiments. Biomed Res Int. 2020;2020:5976127.

    PubMed  PubMed Central  Google Scholar 

  45. Cao J, Sun L, Li J, Zhou C, Cheng L, Chen K, et al. A novel three‑miRNA signature predicts survival in cholangiocarcinoma based on RNA‑Seq data. Oncol Rep. 2018;40:1422–34.

    CAS  PubMed  Google Scholar 

  46. Canu V, Donzelli S, Sacconi A, Lo Sardo F, Pulito C, Bossel N, et al. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ. 2021;28:1493–511.

    Article  CAS  PubMed  Google Scholar 

  47. Sun Y, Wang Q, Zhang Y, Geng M, Wei Y, Liu Y, et al. Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. J Hepatol. 2020;73:603–15.

    Article  CAS  PubMed  Google Scholar 

  48. Xia L, Chen X, Yang J, Zhu S, Zhang L, Yin Q, et al. Long non-coding RNA-PAICC promotes the tumorigenesis of human intrahepatic cholangiocarcinoma by increasing YAP1 transcription. Front Oncol. 2020;10:595533.

    Article  PubMed  Google Scholar 

  49. Qiao G, Dai C, He Y, Shi J, Xu C. Effects of miR‑106b‑3p on cell proliferation and epithelial‑mesenchymal transition, and targeting of ZNRF3 in esophageal squamous cell carcinoma. Int J Mol Med. 2019;43:1817–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiao D, Yan Y, Shui S, Wu G, Ren J, Wang Y, et al. miR-106b regulates the 5-fluorouracil resistance by targeting Zbtb7a in cholangiocarcinoma. Oncotarget. 2017;8:52913–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Tatsuhiko Kakisaka, Satoshi Nishiwada, Geeta Sharma, Divya Sahu, In-Seob Lee, and Yasuyuki Okada for discussing the experiments and analysis. We thank Drs. Kensuke Yamamura, Takeo Toshima, Masaaki Nishi, Shinichiro Yamada, and Kazunori Tokuda, as well as Ms. Yumi Horikawa, for collecting clinical samples and information. We also would like to extend our thanks to Dr. Kerin Higa for her significant editing and useful suggestions for improving the quality of our manuscript.

Funding

This work was supported by CA72851, CA181572, CA184792, CA202797, and CA227602 grants from the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Y Wada: Study concept and design; specimen provider; acquisition of clinical data; analysis and interpretation of data and statistical analysis; drafting of the manuscript. M Shimada: Study concept and design; specimen provider; acquisition of clinical data; drafting of the manuscript. Y Morine: Study concept and design; specimen provider; acquisition of clinical data; drafting of the manuscript. T Ikemoto: Study concept and design; specimen provider; acquisition of clinical data; drafting of the manuscript. Y Saito: Study concept and design; specimen provider; acquisition of clinical data; drafting of the manuscript. H Baba: Study concept and design; specimen provider; acquisition of clinical data; drafting of the manuscript. M Mori: Study concept and design; specimen provider; acquisition of clinical data; drafting of the manuscript. A Goel: Study concept and design; analysis and interpretation of data and statistical analysis; drafting of the manuscript

Corresponding author

Correspondence to Ajay Goel.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in accordance with the Declaration of Helsinki. A written informed consent was obtained from all patients, and the study was approved by the institutional review boards of all participating institutions.

Consent to publish

No individual person’s data were used in this paper, and thus no consent for publication was required for these studies.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, Y., Shimada, M., Morine, Y. et al. A blood-based noninvasive miRNA signature for predicting survival outcomes in patients with intrahepatic cholangiocarcinoma. Br J Cancer 126, 1196–1204 (2022). https://doi.org/10.1038/s41416-022-01710-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-022-01710-z

Search

Quick links