Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics and Genomics

Lymphoid-specific helicase in epigenetics, DNA repair and cancer

Subjects

Abstract

Lymphoid-specific helicase (LSH) is a member of the SNF2 helicase family of chromatin-remodelling proteins. Dysfunctions or mutations in LSH causes an autosomal recessive disease known as immunodeficiency-centromeric instability-facial anomaly (ICF) syndrome. Interestingly, LSH participates in various aspects of epigenetic regulation, including nucleosome remodelling, DNA methylation, histone modifications and heterochromatin formation. Further, LSH plays a crucial role during DNA-damage repair, specifically during double-strand break (DSB) repair, since murine LSH was shown to be essential for non-homologous end joining (NHEJ) and homologous recombination (HR). Accordingly, overexpression of LSH drives tumorigenesis and malignancy. On the other hand, LSH homologs stabilise the genome. Thus, LSH might be implemented as a biomarker for various cancer types and potential target molecule to develop therapeutic strategies against them. In this review, we focus on the role of LSH in orchestrating chromatin rearrangements, such as DNA methylation and histone modifications, as well as in DNA-damage repair. Changes in chromatin structure may facilitate gene expression signatures that cause malignant transformation. We summarise recent findings of LSH in cancers and raise critical open questions for further studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LSH is a key regulator of chromatin structure and DNA-damage repair.
Fig. 2: The expression of LSH in various cancers.
Fig. 3: The roles of LSH in carcinogenesis.
Fig. 4: Domains of LSH homologs.

Similar content being viewed by others

Data availability

Data analysed in Fig. 2 were extracted from the TCGA database (https://portal.gdc.cancer.gov/). The overall survival rate graph of NSCLC is from the study conducted by Mao et al., and the usage of the graph was approved (PMID: 30094095).

References

  1. Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99.

    Article  CAS  PubMed  Google Scholar 

  2. Boland M, Nazor K, Loring J. Epigenetic regulation of pluripotency and differentiation. Circulation Res. 2014;115:311–24.

    Article  CAS  PubMed  Google Scholar 

  3. Dobersch, S, Rubio, K, Barreto, G. Pioneer factors and architectural proteins mediating embryonic expression signatures in cancer. Trends Mol Med. 2019. https://doi.org/10.1016/j.molmed.2019.01.008.

  4. Singh AK, Mueller-Planitz F. Nucleosome positioning and spacing: from mechanism to function. J Mol Biol. 2021;433:166847.

    Article  CAS  PubMed  Google Scholar 

  5. Flaus A, Martin D, Barton G, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 2006;34:2887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartholomew B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu Rev Biochem. 2014;83:671–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol. 2014;2:5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee DW, Zhang K, Ning ZQ, Raabe EH, Tintner S, Wieland R, et al. Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Cancer Res. 2000;60:3612–22.

    CAS  PubMed  Google Scholar 

  9. Jarvis CD, Geiman T, Vila-Storm MP, Osipovich O, Akella U, Candeias S, et al. A novel putative helicase produced in early murine lymphocytes. Gene. 1996;169:203–7.

    Article  CAS  PubMed  Google Scholar 

  10. Geiman T, Tessarollo L, Anver M, Kopp J, Ward J, Muegge K. Lsh, a SNF2 family member, is required for normal murine development. Biochimica et Biophysica Acta. 2001;1526:211–20.

    Article  CAS  PubMed  Google Scholar 

  11. Dennis K, Fan T, Geiman T, Yan Q, Muegge K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 2001;15:2940–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yan Q, Huang J, Fan T, Zhu H, Muegge K. Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J. 2003;22:5154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muegge K, Geiman T, Xi S, Jiang Q, Schmidtman A, Chen T, et al. Lsh is involved in de novo methylation of DNA. Proc Am Assoc Cancer Res Annu Meet. 2006;47:541–541.

    Google Scholar 

  14. Zocchi L, Mehta A, Wu SC, Wu J, Gu Y, Wang J, et al. Chromatin remodeling protein HELLS is critical for retinoblastoma tumor initiation and progression. Oncogenesis. 2020;9:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sha K, Boyer LA. The chromatin signature of pluripotent cells (May 31, 2009), StemBook, ed. The Stem Cell Research Community, StemBook, https://doi.org/10.3824/stembook.1.45.1, http://www.stembook.org.

  16. Delgado-Olguin P, Recillas-Targa F. Chromatin structure of pluripotent stem cells and induced pluripotent stem cells. Brief Funct Genomics. 2011;10:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren J, Briones V, Barbour S, Yu W, Han Y, Terashima M, et al. The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res. 2015;43:1444–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Law C-T, Wei L, Tsang FH-C, Chan CY-K, Xu IM-J, Lai RK-H, et al. HELLS regulates chromatin remodeling and epigenetic silencing of multiple tumor suppressor genes in human hepatocellular carcinoma. Hepatology. 2019;69:2013–30.

    Article  CAS  PubMed  Google Scholar 

  19. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015. https://doi.org/10.1007/s10555-015-9563-3.

  21. Smith Z, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.

    Article  CAS  PubMed  Google Scholar 

  22. Jenness C, Giunta S, Müller MM, Kimura H, Muir TW, Funabiki H. HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome. Proc Natl Acad Sci USA. 2018;115:E876–e885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Termanis A, Torrea N, Culley J, Kerr A, Ramsahoye B, Stancheva I. The SNF2 family ATPase LSH promotes cell-autonomous de novo DNA methylation in somatic cells. Nucleic Acids Res. 2016;44:7592–604.

    Article  PubMed  PubMed Central  Google Scholar 

  24. De La Fuente R, Baumann C, Fan T, Schmidtmann A, Dobrinski I, Muegge K. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells. Nat Cell Biol. 2006;8:1448–54.

    Article  Google Scholar 

  25. Zeng W, Baumann C, Schmidtmann A, Honaramooz A, Tang L, Bondareva A, et al. Lymphoid-specific helicase (HELLS) is essential for meiotic progression in mouse spermatocytes. Biol Reprod. 2011;84:1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan T, Yan Q, Huang J, Austin S, Cho E, Ferris D, et al. Lsh-deficient murine embryonal fibroblasts show reduced proliferation with signs of abnormal mitosis. Cancer Res. 2003;63:4677–83.

    CAS  PubMed  Google Scholar 

  27. Baumann C, Ma W, Wang X, Kandasamy MK, Viveiros MM, De La Fuente R. Helicase LSH/Hells regulates kinetochore function, histone H3/Thr3 phosphorylation and centromere transcription during oocyte meiosis. Nat Commun. 2020;11:4486–4486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dunican DS, Cruickshanks HA, Suzuki M, Semple CA, Davey T, Arceci RJ, et al. Lsh regulates LTR retrotransposon repression independently of Dnmt3b function. Genome Biol. 2013;14:R146.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445:671–5.

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34.

    Article  CAS  PubMed  Google Scholar 

  31. Ross SE, Bogdanovic O. TET enzymes, DNA demethylation and pluripotency. Biochem Soc Trans. 2019;47:875–85.

    Article  CAS  PubMed  Google Scholar 

  32. Jia J, Shi Y, Chen L, Lai W, Yan B, Jiang Y, et al. Decrease in lymphoid specific helicase and 5-hydroxymethylcytosine is associated with metastasis and genome instability. Theranostics. 2017;7:3920–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Wijst M, Venkiteswaran M, Chen H, Xu G, Plösch T, Rots M. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase. Epigenetics. 2015;10:671–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Fischle W, Cheung W, Jacobs S, Khorasanizadeh S, Allis CD. Beyond the double helix: writing and reading the histone code. Novartis Found Symp. 2004;259:3–17. discussion 17–21, 163–169.

    CAS  PubMed  Google Scholar 

  35. Singh I, Ozturk N, Cordero J, Mehta A, Hasan D, Cosentino C, et al. High mobility group protein-mediated transcription requires DNA damage marker gamma-H2AX. Cell Res. 2015;25:837–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dobersch S, Rubio K, Singh I, Gunther S, Graumann J, Cordero J, et al. Positioning of nucleosomes containing gamma-H2AX precedes active DNA demethylation and transcription initiation. Nat Commun. 2021;12:1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu W, Briones V, Lister R, McIntosh C, Han Y, Lee EY, et al. CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity. Proc Natl Acad Sci USA. 2014;111:5890–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren J, Hathaway NA, Crabtree GR, Muegge K. Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics. 2018;13:173–81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Han Y, Ren J, Lee E, Xu X, Yu W, Muegge K. Lsh/HELLS regulates self-renewal/proliferation of neural stem/progenitor cells. Sci Rep. 2017;7:1136.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.

    Article  CAS  PubMed  Google Scholar 

  41. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.

    Article  PubMed  Google Scholar 

  42. Singh I, Contreras A, Cordero J, Rubio K, Dobersch S, Gunther S, et al. MiCEE is a ncRNA-protein complex that mediates epigenetic silencing and nucleolar organization. Nat Genet. 2018;50:990–1001.

    Article  CAS  PubMed  Google Scholar 

  43. Myant K, Stancheva I. LSH cooperates with DNA methyltransferases to repress transcription. Mol Cell Biol. 2008;28:215–26.

    Article  CAS  PubMed  Google Scholar 

  44. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Unoki M, Funabiki H, Velasco G, Francastel C, Sasaki H. CDCA7 and HELLS mutations undermine nonhomologous end joining in centromeric instability syndrome. J Clin Investig. 2019;129:78–92.

    Article  PubMed  Google Scholar 

  46. Aguilera A, Garcia-Muse T. Causes of genome instability. Annu Rev Genet. 2013;47:1–32.

    Article  CAS  PubMed  Google Scholar 

  47. Scully R, Panday A, Elango R, Willis N. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002;23:687–96.

    Article  CAS  PubMed  Google Scholar 

  49. Dimitrova N, de Lange T. Cell cycle-dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of nonhomologous end joining (NHEJ) in G1 and resection-mediated inhibition of NHEJ in G2. Mol Cell Biol. 2009;29:5552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahaney B, Meek K, Lees-Miller S. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochemical J. 2009;417:639–50.

    Article  CAS  Google Scholar 

  51. Basenko E, Kamei M, Ji L, Schmitz R, Lewis Z. The LSH/DDM1 homolog MUS-30 is required for genome stability, but not for DNA methylation in Neurospora crassa. PLoS Genet. 2016;12:e1005790.

    Article  PubMed  PubMed Central  Google Scholar 

  52. He YF, Ren JK, Xu XP, Ni K, Schwader A, Finney R, et al. Lsh/HELLS is required for B lymphocyte development and immunoglobulin class switch recombination. Proc Natl Acad Sci USA. 2020;117:20100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kollárovič G, Topping C, Shaw E, Chambers A. The human HELLS chromatin remodelling protein promotes end resection to facilitate homologous recombination and contributes to DSB repair within heterochromatin. Nucleic Acids Res. 2020;48:1872–85.

    Article  PubMed  Google Scholar 

  54. Syed A, Tainer J. The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 2018;87:263–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sartori A, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paull T. Mechanisms of ATM activation. Annu Rev Biochem. 2015;84:711–38.

    Article  CAS  PubMed  Google Scholar 

  57. Wu L, Luo K, Lou Z, Chen J. MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc Natl Acad Sci USA. 2008;105:11200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li J, Stern DF. DNA damage regulates Chk2 association with chromatin. J Biol Chem. 2005;280:37948–56.

    Article  CAS  PubMed  Google Scholar 

  59. Kakarougkas A, Ismail A, Klement K, Goodarzi A, Conrad S, Freire R, et al. Opposing roles for 53BP1 during homologous recombination. Nucleic Acids Res. 2013;41:9719–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burrage J, Termanis A, Geissner A, Myant K, Gordon K, Stancheva I. The SNF2 family ATPase LSH promotes phosphorylation of H2AX and efficient repair of DNA double-strand breaks in mammalian cells. J cell Sci. 2012;125:5524–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Spruce C, Dlamini S, Ananda G, Bronkema N, Tian H, Paigen K, et al. HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. Genes Dev. 2020;34:398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Roos W, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res. 2016;44:10017–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller K, Tjeertes J, Coates J, Legube G, Polo S, Britton S, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol. 2010;17:1144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson D, Spitz G, Tharkar S, Quayle S, Shearstone J, Jones S, et al. HDAC1,2 inhibition impairs EZH2- and BBAP-mediated DNA repair to overcome chemoresistance in EZH2 gain-of-function mutant diffuse large B-cell lymphoma. Oncotarget. 2015;6:4863–87.

    Article  PubMed  Google Scholar 

  65. Rubio K, Singh I, Dobersch S, Sarvari P, Gunther S, Cordero J, et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nat Commun. 2019;10:2229.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee SJ, Jang H, Park C. Maspin increases Ku70 acetylation and Bax-mediated cell death in cancer cells. Int J Mol Med. 2012;29:225–30.

    CAS  PubMed  Google Scholar 

  67. Yang R, Liu N, Chen L, Jiang Y, Shi Y, Mao C, et al. GIAT4RA functions as a tumor suppressor in non-small cell lung cancer by counteracting Uchl3-mediated deubiquitination of LSH. Oncogene. 2019;38:7133–45.

    Article  CAS  PubMed  Google Scholar 

  68. Yang R, Liu N, Chen L, Jiang Y, Shi Y, Mao C, et al. LSH interacts with and stabilizes GINS4 transcript that promotes tumourigenesis in non-small cell lung cancer. J Exp Clin Cancer Res: CR. 2019;38:280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Waseem A, Ali M, Odell E, Fortune F, Teh M. Downstream targets of FOXM1: CEP55 and HELLS are cancer progression markers of head and neck squamous cell carcinoma. Oral Oncol. 2010;46:536–42.

    Article  CAS  PubMed  Google Scholar 

  70. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen L, Shi Y, Liu N, Wang Z, Yang R, Yan B, et al. DNA methylation modifier LSH inhibits p53 ubiquitination and transactivates p53 to promote lipid metabolism. Epigenetics Chromatin 2019;12:1–22.

  72. Peng X, Sun J, Long Y, Xiao D, Zhou J, Tao Y, et al. The significance of HOXC11 and LSH in survival prediction in gastric adenocarcinoma. OncoTargets Ther. 2021;14:1517–29.

    Article  Google Scholar 

  73. Yang R, Liu G, Han L, Qiu Y, Wang L, Wang M. MiR-365a-3p-mediated regulation of HELLS/GLUT1 axis suppresses aerobic glycolysis and gastric cancer growth. Front Oncol. 2021;11:616390.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Long J, Xia A, Liu J, Jing J, Wang Y, Qi C, et al. Decrease in DNA methylation 1 (DDM1) is required for the formation of CHH islands in maize. J Integr Plant Biol. 2019;61:749–64.

    Article  CAS  PubMed  Google Scholar 

  75. Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 2017;7:3293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu Y, Mao C, Wang M, Liu N, Ouyang L, Liu S, et al. Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene. 2020;39:2358–76.

    Article  CAS  PubMed  Google Scholar 

  77. Dixon S, Stockwell B. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9–17.

    Article  CAS  PubMed  Google Scholar 

  78. Liu, N, Lin, X, Huang, C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br J Cancer. 2019. https://doi.org/10.1038/s41416-019-0660-x.

  79. Myant K, Termanis A, Sundaram A, Boe T, Li C, Merusi C, et al. LSH and G9a/GLP complex are required for developmentally programmed DNA methylation. Genome Res. 2011;21:83–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He X, Yan B, Liu S, Jia J, Lai W, Xin X, et al. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res. 2016;76:5743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. von Eyss B, Maaskola J, Memczak S, Möllmann K, Schuetz A, Loddenkemper C, et al. The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO J. 2012;31:972–85.

    Article  Google Scholar 

  82. Rawłuszko-Wieczorek A, Siera A, Jagodziński P. TET proteins in cancer: current ‘state of the art’. Crit Rev Oncol/Hematol. 2015;96:425–36.

    Article  Google Scholar 

  83. Spruijt C, Gnerlich F, Smits A, Pfaffeneder T, Jansen P, Bauer C, et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 2013;152:1146–59.

    Article  CAS  PubMed  Google Scholar 

  84. Liu N, Yang R, Shi Y, Chen L, Liu Y, Wang Z, et al. The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduct Target Ther. 2020;5:197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen D, Maruschke M, Hakenberg O, Zimmermann W, Stief C, Buchner A. TOP2A, HELLS, ATAD2, and TET3 are novel prognostic markers in renal cell carcinoma. Urology. 2017;102:265.e261–265.e267.

    Article  Google Scholar 

  86. Yan X, Dong X, Liu L, Yang Y, Lai J, Guo Y. DNA methylation signature of intergenic region involves in nucleosome remodeler DDM1-mediated repression of aberrant gene transcriptional read-through. J Genet genomics = Yi Chuan Xue Bao. 2016;43:513–23.

    Article  PubMed  Google Scholar 

  87. Corem S, Doron-Faigenboim A, Jouffroy O, Maumus F, Arazi T, Bouché N. ddm1Redistribution of CHH methylation and small interfering RNAs across the Genome of Tomato Mutants. Plant cell. 2018;30:1628–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ito T, Tarutani Y, To T, Kassam M, Duvernois-Berthet E, Cortijo S, et al. Genome-wide negative feedback drives transgenerational DNA methylation dynamics in Arabidopsis. PLoS Genet. 2015;11:e1005154.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kinoshita Y, Saze H, Kinoshita T, Miura A, Soppe W, Koornneef M, et al. Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J: Cell Mol Biol. 2007;49:38–45.

    Article  CAS  Google Scholar 

  90. Zemach A, Kim M, Hsieh P, Coleman-Derr D, Eshed-Williams L, Thao K, et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153:193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lyons, D, Zilberman, D. DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes. eLife. 2017;6:e30674.

  92. Tan F, Lu Y, Jiang W, Wu T, Zhang R, Zhao Y, et al. DDM1 represses noncoding RNA expression and RNA-directed DNA methylation in heterochromatin. Plant Physiol. 2018;177:1187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang D, Qu Z, Yang L, Zhang Q, Liu Z, Do T, et al. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J: Cell Mol Biol. 2017;90:133–46.

    Article  CAS  Google Scholar 

  94. Litwin I, Bakowski T, Maciaszczyk-Dziubinska E, Wysocki R. The LSH/HELLS homolog Irc5 contributes to cohesin association with chromatin in yeast. Nucleic Acids Res. 2017;45:6404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mao C, Wang M, Qian B, Ouyang L, Shi Y, Liu N, et al. Aryl hydrocarbon receptor activated by benzo (a) pyrene promotes SMARCA6 expression in NSCLC. Am J Cancer Res. 2018;8:1214–27.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the members of the laboratory for their resourceful comments on the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China [82072594, 81672787, YT; 82073097, 81874139, 81672991, S.Liu; 82002916, CM; 82073136, 81772927, DX], China Postdoctoral Science Foundation [2019 M652804, CM], Natural Science Foundation of Hunan Province [2020JJ5790, CM], Hunan Provincial Key Area R&D Programs [2019SK2253, YT], Postdoctoral Foundation of Central South University [220372, CM], Shenzhen Science and Technology Program [KQTD20170810160226082, YT], and Shenzhen Municipal Government of China [JCYJ20180507184647104, YT]. Guillermo Barreto was funded by the “Université Paris-Est Créteil” (UPEC, Créteil, France), the “Centre National de la Recherche Scientifique” (CNRS, France), “Délégation Centre-Est” (CNRS-DR6), the “Lorraine Université” (LU, France) through the initiative “Lorraine Université d’Excellence” (LUE) and the dispositive “Future Leader” and the “Deutsche Forschungsgemeinschaft” (DFG, Bonn, Germany) (BA 4036/4-1). Karla Rubio was funded by the “Consejo de Ciencia y Tecnología del Estado de Puebla” (CONCYTEP, Puebla, Mexico) through the initiative International Laboratory EPIGEN.

Author information

Authors and Affiliations

Authors

Contributions

YT, DX and GB contributed to the conception of the study; XC, Yamei Li and KR wrote the manuscript; BD, Yuyi Li and QT performed the data analyses; CM and SL helped with constructive discussions.

Corresponding authors

Correspondence to Desheng Xiao, Guillermo Barreto or Yongguang Tao.

Ethics declarations

Ethics approval and consent to participate

This work does not require any ethical approval or participating consent.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests. This manuscript has been read and approved by all the authors, and has not been submitted to or is not under consideration for publication elsewhere.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, Y., Rubio, K. et al. Lymphoid-specific helicase in epigenetics, DNA repair and cancer. Br J Cancer 126, 165–173 (2022). https://doi.org/10.1038/s41416-021-01543-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01543-2

This article is cited by

Search

Quick links