Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma

Abstract

Background

p53 plays a key role in the DNA repair process and response to ionising radiation. We sought to determine the clinical phenotype of TP53 mutations and p53 pathway alterations in patients with rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) treated with radiation.

Methods

Of patients with available genomic sequencing, we identified 109 patients with RMS and ES treated to a total of 286 radiation sites. We compared irradiated tumour control among tumours with TP53 mutations (n = 40) to those that were TP53 wild-type (n = 246). We additionally compared irradiated tumour control among tumours with any p53 pathway alteration (defined as tumours with TP53 mutations or TP53 wild-type tumours identified to have MDM2/4 amplification and/or CDKN2A/B deletion, n = 78) to those without such alterations (n = 208).

Results

The median follow-up was 26 months from radiation. TP53 mutations were associated with worse irradiated tumour control among the entire cohort (hazard ratio, HR = 2.8, P < 0.0001). Tumours with any p53 pathway alteration also had inferior irradiated tumour control (HR = 2.0, P = 0.003). On multivariable analysis, after controlling for tumour histology, intent of radiation, presence of gross disease, and biologically effective dose, TP53 mutations continued to be associated with a radioresistant phenotype (HR = 7.1, P < 0.0001).

Conclusions

Our results show that TP53 mutations are associated with increased radioresistance in RMS and ES. Novel strategies to overcome this radioresistance are important for improved outcomes in p53 disruptive RMS and ES.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CONSORT.
Fig. 2: Oncoprint.
Fig. 3: Irradiated tumour progression and survival analyses by TP53 status.

Similar content being viewed by others

References

  1. Grunewald, T. G. P., Cidre-Aranaz, F., Surdez, D., Tomazou, E. M., de Alava, E., Kovar, H. et al. Ewing sarcoma. Nat. Rev. Dis. Prim. 4, 5 (2018).

    Article  Google Scholar 

  2. Skapek, S. X., Ferrari, A., Gupta, A. A., Lupo, P. J., Butler, E., Shipley, J. et al. Rhabdomyosarcoma. Nat. Rev. Dis. Prim. 5, 1 (2019).

    Article  Google Scholar 

  3. Casey, D. L., Chi, Y. Y., Donaldson, S. S., Hawkins, D. S., Tian, J., Arndt, C. A. et al. Increased local failure for patients with intermediate-risk rhabdomyosarcoma on ARST0531: a report from the Children’s Oncology Group. Cancer 125, 3242–3248 (2019).

    Article  CAS  Google Scholar 

  4. Ahmed, S. K., Randall, R. L., DuBois, S. G., Harmsen, W. S., Krailo, M., Marcus, K. J. et al. Identification of patients with localized Ewing sarcoma at higher risk for local failure: a report from the Children’s Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 99, 1286–1294 (2017).

    Article  Google Scholar 

  5. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  6. Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  Google Scholar 

  7. Zhukova, N., Ramaswamy, V., Remke, M., Martin, D. C., Castelo-Branco, P., Zhang, C. H. et al. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathol. Commun. 2, 174 (2014).

    Article  Google Scholar 

  8. Werbrouck, C., Evangelista, C. C. S., Lobon-Iglesias, M. J., Barret, E., Le Teuff, G., Merlevede, J. et al. TP53 pathway alterations drive radioresistance in diffuse intrinsic pontine gliomas (DIPG). Clin. Cancer Res. 25, 6788–6800 (2019).

    Article  CAS  Google Scholar 

  9. Yogev, O., Barker, K., Sikka, A., Almeida, G. S., Hallsworth, A., Smith, L. M. et al. p53 loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance. Cancer Res. 76, 3025–3035 (2016).

    Article  CAS  Google Scholar 

  10. Akiyama, A., Minaguchi, T., Fujieda, K., Hosokawa, Y., Nishida, K., Shikama, A. et al. Abnormal accumulation of p53 predicts radioresistance leading to poor survival in patients with endometrial carcinoma. Oncol. Lett. 18, 5952–5958 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Skinner, H. D., Sandulache, V. C., Ow, T. J., Meyn, R. E., Yordy, J. S., Beadle, B. M. et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin. Cancer Res. 18, 290–300 (2012).

    Article  CAS  Google Scholar 

  12. Lerman, D. M., Monument, M. J., McIlvaine, E., Liu, X. Q., Huang, D., Monovich, L. et al. Tumoral TP53 and/or CDKN2A alterations are not reliable prognostic biomarkers in patients with localized Ewing sarcoma: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 62, 759–765 (2015).

    Article  CAS  Google Scholar 

  13. Casey, D. L., Wexler, L. H., Pitter, K. L., Samstein, R. M., Slotkin, E. K. & Wolden, S. L. Genomic determinants of clinical outcomes in rhabdomyosarcoma. Clin. Cancer Res. 26, 1135–1140 (2020).

    Article  CAS  Google Scholar 

  14. de Alava, E., Antonescu, C. R., Panizo, A., Leung, D., Meyers, P. A., Huvos, A. G. et al. Prognostic impact of P53 status in Ewing sarcoma. Cancer 89, 783–792 (2000).

    Article  Google Scholar 

  15. Huang, H. Y., Illei, P. B., Zhao, Z., Mazumdar, M., Huvos, A. G., Healey, J. H. et al. Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J. Clin. Oncol. 23, 548–558 (2005).

    Article  CAS  Google Scholar 

  16. Tirode, F., Surdez, D., Ma, X., Parker, M., Le Deley, M. C., Bahrami, A. et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4, 1342–1353 (2014).

    Article  CAS  Google Scholar 

  17. Chen, X., Bahrami, A., Pappo, A., Easton, J., Dalton, J., Hedlund, E. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014).

    Article  CAS  Google Scholar 

  18. Poeta, M. L., Manola, J., Goldwasser, M. A., Forastiere, A., Benoit, N., Califano, J. A. et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 357, 2552–2561 (2007).

    Article  CAS  Google Scholar 

  19. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  Google Scholar 

  20. McIlwrath, A. J., Vasey, P. A., Ross, G. M. & Brown, R. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res. 54, 3718–3722 (1994).

    CAS  PubMed  Google Scholar 

  21. Siles, E., Villalobos, M., Valenzuela, M. T., Nunez, M. I., Gordon, A., McMillan, T. J. et al. Relationship between p53 status and radiosensitivity in human tumour cell lines. Br. J. Cancer 73, 581–588 (1996).

    Article  CAS  Google Scholar 

  22. Shu, H. K., Kim, M. M., Chen, P., Furman, F., Julin, C. M. & Israel, M. A. The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21(BAX) expression. Proc. Natl Acad. Sci. USA 95, 14453–14458 (1998).

    Article  CAS  Google Scholar 

  23. Curtin, N. J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer 12, 801–817 (2012).

    Article  CAS  Google Scholar 

  24. Ma, C. X., Cai, S., Li, S., Ryan, C. E., Guo, Z., Schaiff, W. T. et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J. Clin. Investig. 122, 1541–1552 (2012).

    Article  CAS  Google Scholar 

  25. Vance, S., Liu, E., Zhao, L., Parsels, J. D., Parsels, L. A., Brown, J. L. et al. Selective radiosensitization of p53 mutant pancreatic cancer cells by combined inhibition of Chk1 and PARP1. Cell Cycle 10, 4321–4329 (2011).

    Article  CAS  Google Scholar 

  26. Zhang, Y., Lai, J., Du, Z., Gao, J., Yang, S., Gorityala, S. et al. Targeting radioresistant breast cancer cells by single agent CHK1 inhibitor via enhancing replication stress. Oncotarget 7, 34688–34702 (2016).

    Article  Google Scholar 

  27. Kwok, M., Davies, N., Agathanggelou, A., Smith, E., Oldreive, C., Petermann, E. et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127, 582–595 (2016).

    Article  CAS  Google Scholar 

  28. Reaper, P. M., Griffiths, M. R., Long, J. M., Charrier, J. D., Maccormick, S., Charlton, P. A. et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7, 428–430 (2011).

    Article  CAS  Google Scholar 

  29. Mikami, K., Medova, M., Nisa, L., Francica, P., Gluck, A. A., Tschan, M. P. et al. Impact of p53 status on radiosensitization of tumor cells by MET inhibition-associated checkpoint abrogation. Mol. Cancer Res. 13, 1544–1553 (2015).

    Article  CAS  Google Scholar 

  30. Hafsi, H., Dillon, M. T., Barker, H. E., Kyula, J. N., Schick, U., Paget, J. T. et al. Combined ATR and DNA-PK inhibition radiosensitizes tumor cells independently of their p53 status. Front. Oncol. 8, 245 (2018).

    Article  Google Scholar 

  31. Ortiz, T., Burguillos, M. A., Lopez-Lluch, G., Navas, P., Herrador, M., Gonzalez, I. et al. Enhanced induction of apoptosis in a radio-resistant bladder tumor cell line by combined treatments with X-rays and wortmannin. Radiat. Environ. Biophys. 47, 445–452 (2008).

    Article  CAS  Google Scholar 

  32. Kumar, R. J., Chao, H. X., Simpson, D. A., Feng, W., Cho, M. G., Roberts, V. R. et al. Dual inhibition of DNA-PK and DNA polymerase theta overcomes radiation resistance induced by p53 deficiency. NAR Cancer. 2, zcaa038 (2020).

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.L.C., K.L.P., L.H.W., E.K.S., G.P.G. and S.L.W. designed the study. D.L.C., K.L.P., L.H.W. and S.L.W. collected the data. D.L.C., K.L.P., L.H.W., E.K.S., G.P.G. and S.L.W. contributed to the formal analysis and methodology. D.L.C., K.L.P. and S.L.W. wrote the original draft. D.L.C., K.L.P., L.H.W., E.K.S., G.P.G. and S.L.W. reviewed and edited.

Corresponding author

Correspondence to Dana L. Casey.

Ethics declarations

Ethics approval and consent to participate

Consent for genomic testing was obtained under the prospective protocol (#12–245) through the Memorial Sloan Kettering Cancer Center Institutional Review Board. Consent to participate in this retrospective analysis was waived by the Memorial Sloan Kettering Cancer Center Institutional Review Board approved protocol (#16–1125). This study was performed in accordance with the Declaration of Helsinki.

Consent to publish

No personal data or identifying information are being submitted.

Data availability

Data are relevant to MSKCC patients and not publicly available. We will make de-identified data available upon request after institutional approval.

Competing interests

D.L.C., K.L.P., L.H.W., E.K.S., G.P.G. and S.L.W. declare no competing interests. L.H.W. held a consultant position at EUSA Pharma in 2019, not relevant to this work.

Funding information

National Institutes of Health/National Cancer Institute Cancer Center Support Grant (P30CA008748).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casey, D.L., Pitter, K.L., Wexler, L.H. et al. TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. Br J Cancer 125, 576–581 (2021). https://doi.org/10.1038/s41416-021-01438-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01438-2

This article is cited by

Search

Quick links