Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metastasis

The breast is yet to come: current and future utility of circulating tumour DNA in breast cancer

Abstract

Advances in genomic strategies and the development of targeted therapies have enabled precision medicine to revolutionise the field of oncology. Precision medicine uses patient-specific genetic and molecular information, traditionally obtained from tumour biopsy samples, to classify tumours and treat them accordingly. However, biopsy samples often fail to provide complete tumour profiling, and the technique is expensive and, of course, relatively invasive. Advances in genomic techniques have led to improvements in the isolation and detection of circulating tumour DNA (ctDNA), a component of a peripheral blood draw/liquid biopsy. Liquid biopsy offers a minimally invasive method to gather genetic information that is representative of a global snapshot of both primary and metastatic sites and can thereby provide invaluable information for potential targeted therapies and methods for tumour surveillance. However, a lack of prospective clinical trials showing direct patient benefit has limited the implementation of liquid biopsies in standard clinical applications. Here, we review the potential of ctDNA obtained by liquid biopsy to revolutionise personalised medicine and discuss current applications of ctDNA both at the benchtop and bedside.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of sample processing for isolation of cfDNA.
Fig. 2: cfDNA technologies mentioned in this review.

References

  1. 1.

    Meisel, J. L., Venur, V. A., Gnant, M. & Carey, L. Evolution of targeted therapy in breast cancer: where precision medicine began. Am. Soc. Clin. Oncol. Educ. Book 38, 78–86 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Condorelli, R., Mosele, F., Verret, B., Bachelot, T., Bedard, P. L., Cortes, J. et al. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 30, 365–373 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Overman, M. J., Modak, J., Kopetz, S., Murthy, R., Yao, J. C., Hicks, M. E. et al. Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J. Clin. Oncol. 31, 17–22 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Poulet, G., Massias, J. & Taly, V. Liquid biopsy: general concepts. Acta Cytol. 63, 449–455 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Chae, Y. K., Davis, A. A., Jain, S., Santa-Maria, C., Flaum, L., Beaubier, N. et al. Concordance of genomic alterations by next-generation sequencing in tumor tissue versus circulating tumor DNA in breast cancer. Mol. Cancer Ther. 16, 1412–1420 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Davis, A. A., Jacob, S., Gerratana, L., Shah, A. N., Wehbe, F., Katam, N. et al. Landscape of circulating tumour DNA in metastatic breast cancer. EBioMedicine 58, 102914 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Nishimura, F., Uno, N., Chiang, P. C., Kaku, N., Morinaga, Y., Hasegawa, H. et al. The effect of in vitro hemolysis on measurement of cell-free DNA. J. Appl. Lab. Med. 4, 235–240 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Sorber, L., Zwaenepoel, K., De Winne, K., Van Casteren, K., Augustus, E., Jacobs, J. et al. A multicenter study to assess EGFR mutational status in plasma: focus on an optimized workflow for liquid biopsy in a clinical setting. Cancers 10, 290 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  9. 9.

    Toro, P. V., Erlanger, B., Beaver, J. A., Cochran, R. L., VanDenBerg, D. A., Yakim, E. et al. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin. Biochem. 48, 993–998 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Toro, P. V., Erlanger, B., Beaver, J. A., Cochran, R. L., VanDenBerg, D. A., Yakim, E. et al. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin. Biochem. https://doi.org/10.1016/j.clinbiochem.2015.07.097 (2015).

  11. 11.

    Medford, A. J., Gillani, R. N. & Park, B. H. Detection of cancer DNA in early stage and metastatic breast cancer patients. Methods Mol. Biol. 1768, 209–227 (2018).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Sorenson, G. D., Pribish, D. M., Valone, F. H., Memoli, V. A., Bzik, D. J. & Yao, S. L. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomarkers Prev. 3, 67–71 (1994).

    CAS  PubMed  Google Scholar 

  13. 13.

    Hindson, C. M., Chevillet, J. R., Briggs, H. A., Gallichotte, E. N., Ruf, I. K., Hindson, B. J. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003–1005 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Miyazawa, H., Tanaka, T., Nagai, Y., Matsuoka, M., Huqun, Sutani, A. et al. Peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based detection test for gefitinib-refractory T790M epidermal growth factor receptor mutation. Cancer Sci. 99, 595–600 (2008).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Wang, H., Jiang, J., Mostert, B., Sieuwerts, A., Martens, J. W., Sleijfer, S. et al. Allele-specific, non-extendable primer blocker PCR (AS-NEPB-PCR) for DNA mutation detection in cancer. J. Mol. Diagn. 15, 62–69 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  16. 16.

    Diehl, F., Li, M., He, Y., Kinzler, K. W., Vogelstein, B. & Dressman, D. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat. Methods 3, 551–559 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Taniguchi, K., Uchida, J., Nishino, K., Kumagai, T., Okuyama, T., Okami, J. et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin. Cancer Res. 17, 7808–7815 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    O’Leary, B., Hrebien, S., Beaney, M., Fribbens, C., Garcia-Murillas, I., Jiang, J. et al. Comparison of BEAMing and Droplet Digital PCR for Circulating Tumor DNA Analysis. Clin Chem 65, 1405–1413 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20.

    Taylor, S. C., Laperriere, G. & Germain, H. Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci. Rep. 7, 2409 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Chen, M. & Zhao, H. Next-generation sequencing in liquid biopsy: cancer screening and early detection. Hum. Genomics 13, 34 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    El Achi, H., Khoury, J. D. & Loghavi, S. Liquid biopsy by next-generation sequencing: a multimodality test for management of cancer. Curr. Hematol. Malig. Rep. 14, 358–367 (2019).

    PubMed  Article  Google Scholar 

  23. 23.

    Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Schmitt, M. W., Kennedy, S. R., Salk, J. J., Fox, E. J., Hiatt, J. B. & Loeb, L. A. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Phallen, J., Sausen, M., Adleff, V., Leal, A., Hruban, C., White, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Newman, A. M., Lovejoy, A. F., Klass, D. M., Kurtz, D. M., Chabon, J. J., Scherer, F. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  Google Scholar 

  29. 29.

    Siu, A. L. & Force, U. S. P. S. T. Screening for breast cancer: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 164, 279–296 (2016).

    PubMed  Article  Google Scholar 

  30. 30.

    Agassi, R., Czeiger, D., Shaked, G., Avriel, A., Sheynin, J., Lavrenkov, K. et al. Measurement of circulating cell-free DNA levels by a simple fluorescent test in patients with breast cancer. Am. J. Clin. Pathol. 143, 18–24 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Gong, B., Xue, J., Yu, J., Li, H., Hu, H., Yen, H. et al. Cell-free DNA in blood is a potential diagnostic biomarker of breast cancer. Oncol. Lett. 3, 897–900 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Yu, D., Tong, Y., Guo, X., Feng, L., Jiang, Z., Ying, S. et al. Diagnostic value of concentration of circulating cell-free DNA in breast cancer: a meta-analysis. Front. Oncol. 9, 95 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Peled, M., Agassi, R., Czeiger, D., Ariad, S., Riff, R., Rosenthal, M. et al. Cell-free DNA concentration in patients with clinical or mammographic suspicion of breast cancer. Sci. Rep. 10, 14601 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Beaver, J. A., Jelovac, D., Balukrishna, S., Cochran, R., Croessmann, S., Zabransky, D. J. et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin. Cancer Res. 20, 2643–2650 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Bettegowda, C., Sausen, M., Leary, R. J., Kinde, I., Wang, Y., Agrawal, N. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra224 (2014).

    Article  CAS  Google Scholar 

  36. 36.

    Chan, K. C. A., Woo, J. K. S., King, A., Zee, B. C. Y., Lam, W. K. J., Chan, S. L. et al. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377, 513–522 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Cohen, J. D., Li, L., Wang, Y., Thoburn, C., Afsari, B., Danilova, L. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Lennon, A. M., Buchanan, A. H., Kinde, I., Warren, A., Honushefsky, A., Cohain, A. T. et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 369, eabb9601 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    de Almeida, B. P., Apolonio, J. D., Binnie, A. & Castelo-Branco, P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 19, 219 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Xu, Z., Sandler, D. P. & Taylor, J. A. Blood DNA methylation and breast cancer: a prospective case-cohort analysis in the sister study. J. Natl Cancer Inst. 112, 87–94 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. 41.

    Shen, S. Y., Singhania, R., Fehringer, G., Chakravarthy, A., Roehrl, M. H. A., Chadwick, D. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Liu, M. C., Jamshidi, A., Venn, O., Fields, A. P., Maher, M. C., Cann, G. et al. Genome-wide cell-free DNA (cfDNA) methylation signatures and effect on tissue of origin (TOO) performance. J. Clin. Oncol. 37, 3049–3049 (2019).

    Article  Google Scholar 

  43. 43.

    Rothe, F., Silva, M. J., Venet, D., Campbell, C., Bradburry, I., Rouas, G. et al. Circulating tumor DNA in HER2-amplified breast cancer: a translational research substudy of the NeoALTTO Phase III Trial. Clin. Cancer Res. 25, 3581–3588 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Oshiro, C., Kagara, N., Naoi, Y., Shimoda, M., Shimomura, A., Maruyama, N. et al. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res. Treat. 150, 299–307 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Goh, J. Y., Feng, M., Wang, W., Oguz, G., Yatim, S., Lee, P. L. et al. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nat. Med. 23, 1319–1330 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Widschwendter, M., Evans, I., Jones, A., Ghazali, S., Reisel, D., Ryan, A. et al. Methylation patterns in serum DNA for early identification of disseminated breast cancer. Genome Med. 9, 115 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Cavallone, L., Aguilar-Mahecha, A., Lafleur, J., Brousse, S., Aldamry, M., Roseshter, T. et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci. Rep. 10, 14704 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Riva, F., Bidard, F. C., Houy, A., Saliou, A., Madic, J., Rampanou, A. et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin. Chem. 63, 691–699 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    McDonald, B. R., Contente-Cuomo, T., Sammut, S. J., Odenheimer-Bergman, A., Ernst, B., Perdigones, N. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, eaax7392 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Cheng, L., Swartz, M. D., Zhao, H., Kapadia, A. S., Lai, D., Rowan, P. J. et al. Hazard of recurrence among women after primary breast cancer treatment-a 10-year follow-up using data from SEER-Medicare. Cancer Epidemiol. Biomarkers Prev. 21, 800–809 (2012).

    PubMed  Article  Google Scholar 

  51. 51.

    Garcia-Murillas, I., Schiavon, G., Weigelt, B., Ng, C., Hrebien, S., Cutts, R. J. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl. Med. 7, 302ra133 (2015).

    PubMed  Article  Google Scholar 

  52. 52.

    Olsson, E., Winter, C., George, A., Chen, Y., Howlin, J., Tang, M. H. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7, 1034–1047 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Parsons, H. A., Rhoades, J., Reed, S. C., Gydush, G., Ram, P., Exman, P. et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin. Cancer Res. 26, 2556–2564 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Coombes, R. C., Page, K., Salari, R., Hastings, R. K., Armstrong, A., Ahmed, S. et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin. Cancer Res. 25, 4255–4263 (2019).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Dawson, S. J., Tsui, D. W., Murtaza, M., Biggs, H., Rueda, O. M., Chin, S. F. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Kodahl, A. R., Ehmsen, S., Pallisgaard, N., Jylling, A. M. B., Jensen, J. D., Laenkholm, A. V. et al. Correlation between circulating cell-free PIK3CA tumor DNA levels and treatment response in patients with PIK3CA-mutated metastatic breast cancer. Mol. Oncol. 12, 925–935 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Liang, D. H., Ensor, J. E., Liu, Z. B., Patel, A., Patel, T. A., Chang, J. C. et al. Cell-free DNA as a molecular tool for monitoring disease progression and response to therapy in breast cancer patients. Breast Cancer Res. Treat. 155, 139–149 (2016).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    O’Leary, B., Hrebien, S., Morden, J. P., Beaney, M., Fribbens, C., Huang, X. et al. Early circulating tumor DNA dynamics and clonal selection with palbociclib and fulvestrant for breast cancer. Nat. Commun. 9, 896 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Karthikeyan, S., Waters, I. G., Dennison, L., Chu, D., Donaldson, J., Shin, D. H. et al. Hierarchical tumor heterogeneity mediated by cell contact between distinct genetic subclones. J. Clin. Invest. 131, e143557 (2021).

    CAS  PubMed Central  Article  Google Scholar 

  60. 60.

    Frenel, J. S., Carreira, S., Goodall, J., Roda, D., Perez-Lopez, R., Tunariu, N. et al. Serial next-generation sequencing of circulating cell-free DNA evaluating tumor clone response to molecularly targeted drug administration. Clin. Cancer Res. 21, 4586–4596 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N. et al. Drug resistance in cancer: an overview. Cancers 6, 1769–1792 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Longley, D. B. & Johnston, P. G. Molecular mechanisms of drug resistance. J. Pathol. 205, 275–292 (2005).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Turner, N. C., Kingston, B., Kilburn, L. S., Kernaghan, S., Wardley, A. M., Macpherson, I. R. et al. Circulating tumour DNA analysis to direct therapy in advanced breast cancer (plasmaMATCH): a multicentre, multicohort, phase 2a, platform trial. Lancet Oncol. 21, 1296–1308 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Toy, W., Shen, Y., Won, H., Green, B., Sakr, R. A., Will, M. et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 45, 1439–1445 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Robinson, D. R., Wu, Y. M., Vats, P., Su, F., Lonigro, R. J., Cao, X. et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45, 1446–1451 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Schiavon, G., Hrebien, S., Garcia-Murillas, I., Cutts, R. J., Pearson, A., Tarazona, N. et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl. Med. 7, 313ra182 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Chandarlapaty, S., Chen, D., He, W., Sung, P., Samoila, A., You, D. et al. Prevalence of ESR1 mutations in cell-free DNA and outcomes in metastatic breast cancer: a secondary analysis of the BOLERO-2 Clinical Trial. JAMA Oncol. 2, 1310–1315 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Spoerke, J. M., Gendreau, S., Walter, K., Qiu, J., Wilson, T. R., Savage, H. et al. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant. Nat. Commun. 7, 11579 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Fribbens, C., O’Leary, B., Kilburn, L., Hrebien, S., Garcia-Murillas, I., Beaney, M. et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J. Clin. Oncol. 34, 2961–2968 (2016).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Wang, P., Bahreini, A., Gyanchandani, R., Lucas, P. C., Hartmaier, R. J., Watters, R. J. et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions, and cell-free DNA of breast cancer patients. Clin. Cancer Res. 22, 1130–1137 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Li, J., Huo, X., Zhao, F., Ren, D., Ahmad, R., Yuan, X. et al. Association of cyclin-dependent kinases 4 and 6 inhibitors with survival in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. JAMA Netw. Open 3, e2020312 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Sledge, G. W., Jr., Toi, M., Neven, P., Sohn, J., Inoue, K., Pivot, X. et al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy-MONARCH 2: a randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.4782 (2019).

  73. 73.

    Turner, N. C., Slamon, D. J., Ro, J., Bondarenko, I., Im, S. A., Masuda, N. et al. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N. Engl. J. Med. 379, 1926–1936 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    O’Leary, B., Cutts, R. J., Liu, Y., Hrebien, S., Huang, X., Fenwick, K. et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 8, 1390–1403 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Bidard, F. C., Callens, C., Dalenc, F., Pistilli, B., Rouge, T. D. L. M., Clatot, F. et al. Prognostic impact of ESR1 mutations in ER+ HER2- MBC patients prior treated with first line AI and palbociclib: an exploratory analysis of the PADA-1 trial. J. Clin. Oncol. 38, 1010 (2020).

    Article  Google Scholar 

  76. 76.

    Turner, N. C., Swift, C., Kilburn, L., Fribbens, C., Beaney, M., Garcia-Murillas, I. et al. ESR1 mutations and overall survival on fulvestrant versus exemestane in advanced hormone receptor-positive breast cancer: a combined analysis of the Phase III SoFEA and EFECT Trials. Clin. Cancer Res. 26, 5172–5177 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Bardia, A., Aftimos, P., Bihani, T., Anderson-Villaluz, A. T., Jung, J., Conlan, M. G. et al. EMERALD: phase III trial of elacestrant (RAD1901) vs endocrine therapy for previously treated ER+ advanced breast cancer. Fut. Oncol. 15, 3209–3218 (2019).

    CAS  Article  Google Scholar 

  78. 78.

    Kaklamani, V., Bardia, A., Wilks, S., Weise, A., Richards, D., Harb, W. et al. Final analysis of phase 1 study of elacestrant (RAD1901), a novel selective estrogen receptor degrader (SERD), in estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer. Cancer Res. 80, PD7–PD07 (2020).

    Google Scholar 

  79. 79.

    Higgins, M. J., Jelovac, D., Barnathan, E., Blair, B., Slater, S., Powers, P. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18, 3462–3469 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Andre, F., Ciruelos, E., Rubovszky, G., Campone, M., Loibl, S., Rugo, H. S. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Juric, D., Castel, P., Griffith, M., Griffith, O. L., Won, H. H., Ellis, H. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 518, 240–244 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Razavi, P. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. Nat. Cancer 1, 382–393 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Park Lab for their thoughtful comments.

Author information

Affiliations

Authors

Contributions

B.A.D., S.C. and B.H.P. conceived the design and wrote the manuscript.

Corresponding author

Correspondence to Ben H. Park.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Data availability

Not applicable.

Competing interests

B.H.P. is a paid consultant for Jackson Labs, Casdin Capital, Pathovax, Sermonix and is a paid scientific advisory board member for Celcuity Inc. Under separate licensing agreements between Horizon Discovery, Ltd and The Johns Hopkins University, S.C. and B.H.P. are entitled to a share of royalties received by the University on sales of products. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. B.A.D. declares no potential conflicts of interest.

Funding information

This work was supported by: The Breast Cancer Research Foundation, Komen Foundation, NIH CA214494, CA194024 (B.H.P.). We would also like to thank and acknowledge the support of The Canney Foundation, the Marcie and Ellen Foundation, Amy and Barry Baker, Donna and John Hall and the Vanderbilt-Ingram Cancer Center support grant (NIH CA068485) and Breast Cancer SPORE (NIH CA098131).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davidson, B.A., Croessmann, S. & Park, B.H. The breast is yet to come: current and future utility of circulating tumour DNA in breast cancer. Br J Cancer 125, 780–788 (2021). https://doi.org/10.1038/s41416-021-01422-w

Download citation

Search

Quick links