Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents

Abstract

Background

Anti-microtubule agents are widely used to treat ovarian cancers, but the efficacy is often compromised by drug resistance. We investigated co-targeting the actin/tropomyosin cytoskeleton and microtubules to increase treatment efficacy in ovarian cancers and potentially overcome resistance.

Methods

The presence of tropomyosin-3.1 (Tpm3.1) was examined in clinical specimens from ovarian cancer patients using immunohistochemistry. Combinatorial effects of an anti-Tpm3.1 compound, ATM-3507, with vinorelbine and paclitaxel were evaluated in ovarian cancer cells via MTS and apoptosis assays. The mechanisms of action were established using live- and fixed-cell imaging and protein analysis.

Results

Tpm3.1 is overexpressed in 97% of tumour tissues (558 of 577) representing all histotypes of epithelial ovarian cancer. ATM-3507 displayed synergy with both anti-microtubule agents to reduce cell viability. Only vinorelbine synergised with ATM-3507 in causing apoptosis. ATM-3507 significantly prolonged vinorelbine-induced mitotic arrest with elevated activity of the spindle assembly checkpoint and mitotic cell death; however, ATM-3507 showed minor impact on paclitaxel-induced mitotic defects. Both combinations substantially increased post-mitotic G1 arrest with cyclin D1 and E1 downregulation and an increase of p21Cip and p27Kip.

Conclusion

Combined targeting of Tpm3.1/actin and microtubules is a promising treatment strategy for ovarian cancer that should be further tested in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative images of Tpm3.1 IHC in patient samples with ovarian cancer and control tissues.
Fig. 2: ATM-3507 (ATM) is efficient and synergises with anti-microtubule agents, vinorelbine (VNB) and paclitaxel (PTX), in reducing the viability of ovarian cancer cells.
Fig. 3: ATM-3507 (ATM) synergistically induces apoptosis with vinorelbine (VNB) but not with paclitaxel (PTX).
Fig. 4: ATM-3507 (ATM) potentiates vinorelbine (VNB)-induced mitotic arrest with elevated activity of the spindle assembly checkpoint (SAC), resulting in an efficient mitotic cell death.
Fig. 5: ATM-3507 (ATM) and both anti-microtubule agents, vinorelbine (VNB) and paclitaxel (PTX), enhance G1/S arrest with upregulation of p21 and p27.

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  2. Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Brest, A., Yu, M. et al. SEER Cancer Statistics Review, 1975-2016 (National Cancer Institute, 2019).

  3. Jelovac, D. & Armstrong, D. K. Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J. Clin. 61, 183–203 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lheureux, S., Gourley, C., Vergote, I. & Oza, A. M. Epithelial ovarian cancer. Lancet 393, 1240–1253 (2019).

    Article  PubMed  Google Scholar 

  5. Pujade-Lauraine, E., Hilpert, F., Weber, B., Reuss, A., Poveda, A., Kristensen, G. et al. AURELIA: a randomized phase III trial evaluating bevacizumab (BEV) plus chemotherapy (CT) for platinum (PT)-resistant recurrent ovarian cancer (OC). J. Clin. Oncol. https://doi.org/10.1200/jco.2012.30.18_suppl.lba5002 (2012).

  6. Burger, R. A., DiSaia, P. J., Roberts, J. A., O’Rourke, M., Gershenson, D. M., Homesley, H. D. et al. Phase II trial of vinorelbine in recurrent and progressive epithelial ovarian cancer. Gynecol. Oncol. 72, 148–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Currier, M. A., Stehn, J. R., Swain, A., Chen, D., Hook, J., Eiffe, E. et al. Identification of cancer-targeted tropomyosin inhibitors and their synergy with microtubule drugs. Mol. Cancer Ther. 16, 1555–1565 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y., Stear, J. H., Swain, A., Xu, X., Bryce, N. S., Carnell, M. et al. Drug targeting the actin cytoskeleton potentiates the cytotoxicity of low dose vincristine by abrogating actin-mediated repair of spindle defects. Mol. Cancer Res. 18, 1074–1087 (2020).

  9. Gunning, P. W., Hardeman, E. C., Lappalainen, P. & Mulvihill, D. P. Tropomyosin - master regulator of actin filament function in the cytoskeleton. J. Cell Sci. 128, 2965–2974 (2015).

    CAS  PubMed  Google Scholar 

  10. Gateva, G., Kremneva, E., Reindl, T., Kotila, T., Kogan, K., Gressin, L. et al. Tropomyosin isoforms specify functionally distinct actin filament populations in vitro. Curr. Biol. 27, 705–713 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schevzov, G., Kee, A. J., Wang, B., Sequeira, V. B., Hook, J., Coombes, J. D. et al. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol. Biol. Cell 26, 2475–2490 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Meiring, J. C. M., Bryce, N. S., Wang, Y., Taft, M. H., Manstein, D. J., Lau, S. L. et al. Co-polymers of actin and tropomyosin account for a major fraction of the human actin cytoskeleton. Curr. Biol. 28, 2331–2337 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Stehn, J. R., Haass, N. K., Bonello, T., Desouza, M., Kottyan, G., Treutlein, H. et al. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res. 73, 5169–5182 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Janco, M., Rynkiewicz, M. J., Li, L., Hook, J., Eiffe, E., Ghosh, A. et al. Molecular integration of the anti-tropomyosin compound ATM-3507 into the coiled coil overlap region of the cancer-associated Tpm3.1. Sci. Rep. 9, 11262 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Goode, B. L., Drubin, D. G. & Barnes, G. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12, 63–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M. & Waterman-Storer, C. M. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 5, 599–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Mukhtar, E., Adhami, V. M. & Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 13, 275–284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uetake, Y. & Sluder, G. Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr. Biol. 20, 1666–1671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelemen, L. E., Kobel, M., Chan, A., Taghaddos, S. & Dinu, I. Differentially methylated loci distinguish ovarian carcinoma histological types: evaluation of a DNA methylation assay in FFPE tissue. Biomed. Res. Int. 2013, 815894 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bromley, A. B., Altman, A. D., Chu, P., Nation, J. G., Nelson, G. S., Ghatage, P. et al. Architectural patterns of ovarian/pelvic high-grade serous carcinoma. Int. J. Gynecol. Pathol. 31, 397–404 (2012).

    Article  PubMed  Google Scholar 

  21. Tsao, S. W., Mok, S. C., Fey, E. G., Fletcher, J. A., Wan, T. S. K., Chew, E. C. et al. Characterization of human ovarian surface epithelial-cells immortalized by human papilloma viral oncogenes (Hpv-E6e7 Orfs). Exp. Cell Res. 218, 499–507 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Schevzov, G., Vrhovski, B., Bryce, N. S., Elmir, S., Qiu, M. R., O’Neill, G. M. et al. Tissue-specific tropomyosin isoform composition. J. Histochem. Cytochem. 53, 557–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Aldridge, G. M., Podrebarac, D. M., Greenough, W. T. & Weiler, I. J. The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J. Neurosci. Methods 172, 250–254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chou, T. C. Preclinical versus clinical drug combination studies. Leuk. Lymphoma 49, 2059–2080 (2008).

    Article  PubMed  Google Scholar 

  25. Saurin, A. T., van der Waal, M. S., Medema, R. H., Lens, S. M. A.,Kops, G. J. P. L. Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis. Nat. Commun. 2, 316 (2011).

  26. Stehn, J. R., Schevzov, G., O’Neill, G. M. & Gunning, P. W. Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Curr. Cancer Drug Targets 6, 245–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Schevzov, G., Whittaker, S. P., Fath, T., Lin, J. J. & Gunning, P. W. Tropomyosin isoforms and reagents. Bioarchitecture 1, 135–164 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Domcke, S., Sinha, R., Levine, D. A., Sander, C., Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 2126 (2013).

  29. Behrens, B. C., Hamilton, T. C., Masuda, H., Grotzinger, K. R., Whang-Peng, J., Louie, K. G. et al. Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res. 47, 414–418 (1987).

    CAS  PubMed  Google Scholar 

  30. Matulonis, U. A., Sood, A. K., Fallowfield, L., Howitt, B. E., Sehouli, J. & Karlan, B. Y. Ovarian cancer. Nat. Rev. Dis. Prim. 2, 16061 (2016).

    Article  PubMed  Google Scholar 

  31. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Elowe, S., Dulla, K., Uldschmid, A., Li, X., Dou, Z. & Nigg, E. A. Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J. Cell Sci. 123, 84–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, H., Hittle, J., Zappacosta, F., Annan, R. S., Hershko, A. & Yen, T. J. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J. Cell Biol. 183, 667–680 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamada, H. Y. & Gorbsky, G. J. Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol. Cancer Ther. 5, 2963–2969 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howell, B. J., Moree, B., Farrar, E. M., Stewart, S., Fang, G. & Salmon, E. D. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14, 953–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, G., Mendez, B. L., Sedgwick, G. G. & Nilsson, J. Two functionally distinct kinetochore pools of BubR1 ensure accurate chromosome segregation. Nat. Commun. 7, 12256 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sherr, C. J. Mammalian G1 cyclins. Cell 73, 1059–1065 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Resnitzky, D. & Reed, S. I. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol. Cell Biol. 15, 3463–3469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Besson, A., Dowdy, S. F. & Roberts, J. M. CDK inhibitors: cell cycle regulators and beyond. Dev. Cell 14, 159–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Kim, T. M., Yim, S. H., Shin, S. H., Xu, H. D., Jung, Y. C., Park, C. K. et al. Clinical implication of recurrent copy number alterations in hepatocellular carcinoma and putative oncogenes in recurrent gains on 1q. Int. J. Cancer 123, 2808–2815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tao, T., Shi, Y., Han, D., Luan, W., Qian, J., Zhang, J. et al. TPM3, a strong prognosis predictor, is involved in malignant progression through MMP family members and EMT-like activators in gliomas. Tumour Biol. 35, 9053–9059 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, W. W., Lin, J. H., Chen, B. Y., Tang, W. F., Yu, S. B., Chen, S. C. et al. Tropomyosin3 is associated with invasion, migration, and prognosis in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 9, 11313–11323 (2016).

    CAS  Google Scholar 

  45. Vaughan, S., Coward, J. I., Bast, R. C. Jr., Berchuck, A., Berek, J. S., Brenton, J. D. et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jayson, G. C., Kerbel, R., Ellis, L. M. & Harris, A. L. Antiangiogenic therapy in oncology: current status and future directions. Lancet 388, 518–529 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Franzese, E., Centonze, S., Diana, A., Carlino, F., Guerrera, L. P., Di Napoli, M. et al. PARP inhibitors in ovarian cancer. Cancer Treat. Rev. 73, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. du Bois, A., Neijt, J. P. & Thigpen, J. T. First line chemotherapy with carboplatin plus paclitaxel in advanced ovarian cancer-a new standard of care?. Ann. Oncol. 10(Suppl. 1), 35–41 (1999).

    Article  PubMed  Google Scholar 

  49. Luvero, D., Milani, A. & Ledermann, J. A. Treatment options in recurrent ovarian cancer: latest evidence and clinical potential. Ther. Adv. Med. Oncol. 6, 229–239 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Engblom, P., Rantanen, V., Kulmala, J. & Grenman, S. Carboplatin-paclitaxel- and carboplatin-docetaxel-induced cytotoxic effect in epithelial ovarian carcinoma in vitro. Cancer 86, 2066–2073 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Xiong, X., Sui, M., Fan, W. & Kraft, A. S. Cell cycle dependent antagonistic interactions between paclitaxel and carboplatin in combination therapy. Cancer Biol. Ther. 6, 1067–1073 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Blagosklonny, M. V. Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6, 70–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Woolner, S., O’Brien, L. L., Wiese, C. & Bement, W. M. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Luxenburg, C., Pasolli, H. A., Williams, S. E. & Fuchs, E. Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat. Cell Biol. 13, 203–214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dugina, V., Alieva, I., Khromova, N., Kireev, I., Gunning, P. W. & Kopnin, P. Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells. Oncotarget 7, 72699–72715 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. di Pietro, F., Echard, A. & Morin, X. Regulation of mitotic spindle orientation: an integrated view. EMBO Rep. 17, 1106–1130 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Reshetnikova, G., Barkan, R., Popov, B., Nikolsky, N. & Chang, L. S. Disruption of the actin cytoskeleton leads to inhibition of mitogen-induced cyclin E expression, Cdk2 phosphorylation, and nuclear accumulation of the retinoblastoma protein-related p107 protein. Exp. Cell Res. 259, 35–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Welsh, C. F., Roovers, K., Villanueva, J., Liu, Y. Q., Schwartz, M. A. & Assoian, R. K. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat. Cell Biol. 3, 950–957 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, X. M., Jiang, J. D., Ferrari, A. C., Budman, D. R. & Wang, L. G. Unique induction of p21(WAF1/CIP1)expression by vinorelbine in androgen-independent prostate cancer cells. Br. J. Cancer 89, 1566–1573 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coleman, M. L., Densham, R. M., Croft, D. R. & Olson, M. F. Stability of p21Waf1/Cip1 CDK inhibitor protein is responsive to RhoA-mediated regulation of the actin cytoskeleton. Oncogene 25, 2708–2716 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Panno, M. L., Giordano, F., Mastroianni, F., Morelli, C., Brunelli, E., Palma, M. G. et al. Evidence that low doses of Taxol enhance the functional transactivatory properties of p53 on p21 waf promoter in MCF-7 breast cancer cells. FEBS Lett. 580, 2371–2380 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Shandiz, F. H., Kadkhodayan, S., Ghaffarzadegan, K., Esmaeily, H., Torabi, S. & Khales, S. A. The impact of p16 and HER2 expression on survival in patients with ovarian carcinoma. Neoplasma 63, 816–821 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, C. Y., Bao, W. & Wang, L. H. Downregulation of p16(ink4a) inhibits cell proliferation and induces G1 cell cycle arrest in cervical cancer cells. Int. J. Mol. Med. 33, 1577–1585 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Lv, L., Zhang, T., Yi, Q., Huang, Y., Wang, Z., Hou, H. et al. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11, 2864–2875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T. & Pellman, D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P. et al. Apoptosis regulation in tetraploid cancer cells. EMBO J. 25, 2584–2595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fuhrken, P. G., Apostolidis, P. A., Lindsey, S., Miller, W. M. & Papoutsakis, E. T. Tumor suppressor protein p53 regulates megakaryocytic polyploidization and apoptosis. J. Biol. Chem. 283, 15589–15600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu, Y., Zhou, Y. & Shi, J. Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle. Cell Cycle 13, 1756–1764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    CAS  PubMed  Google Scholar 

  70. Uhlén, M., Fagerberg, L., Hallström, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Health Science Alliance Biobank from the Translational Cancer Research Network (UNSW Sydney, South Eastern Sydney Local Health District, NSW Health Pathology, Sydney, Australia) for access to tumour tissues that were used in a preliminary study to identify the extent of expression of Tpm3.1 in ovarian cancer. We thank Mr. Christopher Brownlee and Dr. Emma J. Beves (The Flow Cytometry Facility, UNSW Sydney, Sydney, Australia) for flow cytometer training and support; Dr. Michael Cornell, Dr. Elvis Pandzic, Dr. Alex Macmillan, Mrs. Iveta Slapetova and Ms. Florence C. J. Tomasetig (Biomedical Imaging Facility, UNSW Sydney, Sydney, Australia) for microscope training and support; and Dr. Michael Cornell (Biomedical Imaging Facility, UNSW Sydney, Sydney, Australia) for consulting on image data analysis.

Author information

Authors and Affiliations

Authors

Contributions

X.X. designed and performed experiments, analysed the data and drafted the manuscript. Y.W. supervised the project, designed and performed experiments and drafted the manuscript. N.S.B. supervised the project and interpreted the results. K.T. analysed the data and interpreted the results. N.S.M., E.Y.K., L.E.K., M.K. and S.J.R. designed experiments and interpreted the results. M.F. initiated the research concept, designed the experimental strategy and drafted the manuscript. C.E.F. initiated the research concept and designed the experimental strategy. E.C.H. and P.W.G. initiated the research concept, designed the experimental strategy and supervised the project. All authors revised the manuscript and approved the submission of this work.

Corresponding author

Correspondence to Peter W. Gunning.

Ethics declarations

Ethics approval and consent to participate

The study was performed with approval from the UNSW Human Research Ethics Committee (Approval # HC15771 and # HC16299). AOVT and CAL study protocols were approved by Alberta Health Services, Research Ethics and the University of Calgary, Faculty of Medicine, Office of Medical Bioethics, respectively. These study protocols used retrospective data collection from pathology reports and medical charts and were exempt by the ethics boards from requiring informed patient consent. We also declare that the study was performed in accordance with the Declaration of Helsinki.

Consent to publish

Not applicable.

Data availability

Digital data are kept on the server of School of Medical Sciences, UNSW Sydney and available from the corresponding author upon request.

Competing interests

P.W.G. and E.C.H. receive funding from TroBio Therapeutics, a company commercialising anti-tropomyosin drugs. P.W.G. and E.C.H. are directors and shareholders of TroBio. Other authors declare no competing interests.

Funding information

This work was supported by an Australian Department of Industry, Innovation and Science Cooperative Research Centre Project (CRC-P) grant to P.W.G. and E.C.H. and grants from the Australian Research Council (ARC grant DP160101623), the Australian National Health and Medical Research Council (NHMRC grant APP1100202, APP1079866) and The Kid’s Cancer Project to P.W.G. and E.C.H.; N.S.M. is supported by the NSW Ministry of Health and UNSW Sydney under the NSW Health PhD Scholarship Program and the Translational Cancer Research Network, a translational cancer research centre program funded by the Cancer Institute NSW (RG171797 and 15/TRC/1-03).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, Y., Bryce, N.S. et al. Targeting the actin/tropomyosin cytoskeleton in epithelial ovarian cancer reveals multiple mechanisms of synergy with anti-microtubule agents. Br J Cancer 125, 265–276 (2021). https://doi.org/10.1038/s41416-021-01420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01420-y

Search

Quick links