Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Genomics

Metabolic expression profiling stratifies diffuse lower-grade glioma into three distinct tumour subtypes

Abstract

Background

Lower-grade gliomas (LGGs) show highly metabolic heterogeneity and adaptability. To develop effective therapeutic strategies targeting metabolic processes, it is necessary to identify metabolic differences and define metabolic subtypes. Here, we aimed to develop a classification system based on metabolic gene expression profile in LGGs.

Methods

The metabolic gene profile of 402 diffuse LGGs from the Cancer Genome Atlas (TCGA) was used for consensus clustering to determine robust clusters of patients, and the reproducibility of the classification system was evaluated in three Chinese Glioma Genome Atlas (CGGA) cohorts. Then, the metadata set for clinical characteristics, immune infiltration, metabolic signatures and somatic alterations was integrated to characterise the features of each subtype.

Results

We successfully identified and validated three highly distinct metabolic subtypes in LGGs. M2 subtype with upregulated carbohydrate, nucleotide and vitamin metabolism correlated with worse prognosis, whereas M1 subtype with upregulated lipid metabolism and immune infiltration showed better outcome. M3 subtype was associated with low metabolic activities and displayed good prognosis. Three metabolic subtypes correlated with diverse somatic alterations. Finally, we developed and validated a metabolic signature with better performance of prognosis prediction.

Conclusions

Our study provides a new classification based on metabolic gene profile and highlights the metabolic heterogeneity within LGGs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of distinct metabolic subtypes in diffuse lower-grade glioma through metabolism gene profiling.
Fig. 2: Clinical characteristics of metabolic subtypes in TCGA and CGGA cohorts.
Fig. 3: Immune infiltration of three metabolic subtypes in TCGA and CGGA cohorts.
Fig. 4: Association between metabolism-relevant signatures and LGG subtypes.
Fig. 5: Somatic variations associated with metabolic expression subtypes in the TCGA cohort.
Fig. 6: Identification of a metabolic signature associated with overall survival by Cox proportional hazards model.

Similar content being viewed by others

References

  1. Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom, Q. T., Gittleman, H., Farah, P., Ondracek, A., Chen, Y., Wolinsky, Y. et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15, ii1–ii56 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 131, 803–820 (2016).

    Article  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research, N., Brat, D. J., Verhaak, R. G., Aldape, K. D., Yung, W. K., Salama, S. R. et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498 (2015).

    Article  CAS  Google Scholar 

  5. Bourne, T. D. & Schiff, D. Update on molecular findings, management and outcome in low-grade gliomas. Nat. Rev. Neurol. 6, 695–701 (2010).

    Article  PubMed  Google Scholar 

  6. Faubert, B., Solmonson, A. & DeBerardinis, R. J. Metabolic reprogramming and cancer progression. Science 368, eaaw5473 (2020).

  7. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  8. Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitaker-Menezes, D., Martinez-Outschoorn, U. E., Flomenberg, N., Birbe, R. C., Witkiewicz, A. K., Howell, A. et al. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10, 4047–4064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonuccelli, G., Tsirigos, A., Whitaker-Menezes, D., Pavlides, S., Pestell, R. G., Chiavarina, B. et al. Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506–3514 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan, J., Kamphorst, J. J., Mathew, R., Chung, M. K., White, E., Shlomi, T. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bi, J., Chowdhry, S., Wu, S., Zhang, W., Masui, K. & Mischel, P. S. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat. Rev. Cancer 20, 57–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Babic, I., Anderson, E. S., Tanaka, K., Guo, D., Masui, K., Li, B. et al. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab. 17, 1000–1008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masui, K., Tanaka, K., Akhavan, D., Babic, I., Gini, B., Matsutani, T. et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 18, 726–739 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Griffiths, B., Lewis, C. A., Bensaad, K., Ros, S., Zhang, Q., Ferber, E. C. et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 1, 3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rohle, D., Popovici-Muller, J., Palaskas, N., Turcan, S., Grommes, C., Campos, C. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turcan, S., Rohle, D., Goenka, A., Walsh, L. A., Fang, F., Yilmaz, E. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ceccarelli, M., Barthel, F. P., Malta, T. M., Sabedot, T. S., Salama, S. R., Murray, B. A. et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164, 550–563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thorsson, V., Gibbs, D. L., Brown, S. D., Wolf, D., Bortone, D. S., Ou Yang, T. H. et al. The immune landscape of cancer. Immunity 48, 812–830 e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, H., Mu, Q., Bao, Z., Chen, Y., Liu, Y., Chen, J. et al. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell 175, 1665–1678 e18 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, F., Wang, Z. L., Wang, K. Y., Li, G. Z., Chai, R. C., Liu, Y. Q. et al. Classification of diffuse lower-grade glioma based on immunological profiling. Mol. Oncol. 14, 2081–2095 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barthel, F. P., Johnson, K. C., Varn, F. S., Moskalik, A. D., Tanner, G., Kocakavuk, E. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tirosh, I., Venteicher, A. S., Hebert, C., Escalante, L. E., Patel, A. P., Yizhak, K. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Venteicher, A. S., Tirosh, I., Hebert, C., Yizhak, K., Neftel, C., Filbin, M. G. et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355, eaai8478 (2017).

  26. Possemato, R., Marks, K. M., Shaul, Y. D., Pacold, M. E., Kim, D., Birsoy, K. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, C., Huang, X., Liu, Z., Qin, W. & Wang, C. Metabolism-associated molecular classification of hepatocellular carcinoma. Mol. Oncol. 14, 896–913 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, F., Chai, R. C., Wang, Z., Liu, Y. Q., Zhao, Z., Li, G. Z. et al. Molecular classification of IDH-mutant glioblastomas based on gene expression profiles. Carcinogenesis 40, 853–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci. USA 99, 6567–6572 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kapp, A. V. & Tibshirani, R. Are clusters found in one dataset present in another dataset? Biostatistics 8, 9–31 (2007).

    Article  PubMed  Google Scholar 

  32. Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia, W. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).

    Article  PubMed  CAS  Google Scholar 

  33. Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7 (2013).

    Article  Google Scholar 

  35. He, Y., Jiang, Z., Chen, C. & Wang, X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J. Exp. Clin. Cancer Res. 37, 327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rosario, S. R., Long, M. D., Affronti, H. C., Rowsam, A. M., Eng, K. H. & Smiraglia, D. J. Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat. Commun. 9, 5330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, F., Li, G. Z., Liu, H. J., Zhao, Z., Chai, R. C., Liu, Y. Q. et al. Molecular subtyping reveals immune alterations in IDH wild-type lower-grade diffuse glioma. J. Pathol. 251, 272–283 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, R., Li, G., Wang, Z., Hu, H., Zeng, F., Zhang, K. et al. Identification of an ATP metabolism-related signature associated with prognosis and immune microenvironment in gliomas. Cancer Sci. 111, 2325 (2020).

  41. Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R. & Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cancer Genome Atlas Research, N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Article  CAS  Google Scholar 

  43. Noushmehr, H., Weisenberger, D. J., Diefes, K., Phillips, H. S., Pujara, K., Berman, B. P. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17, 510–522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng, X., Chen, Z., Farshidfar, F., Xu, X., Lorenzi, P. L., Wang, Y. et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep. 23, 255–269 e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daemen, A., Peterson, D., Sahu, N., McCord, R., Du, X., Liu, B. et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl Acad. Sci. USA 112, E4410–E4417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bidkhori, G., Benfeitas, R., Klevstig, M., Zhang, C., Nielsen, J., Uhlen, M. et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc. Natl Acad. Sci. USA 115, E11874–E11883 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Gottfried, E., Kunz-Schughart, L. A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R. et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107, 2013–2021 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Macintyre, A. N., Gerriets, V. A., Nichols, A. G., Michalek, R. D., Rudolph, M. C., Deoliveira, D. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson, M. O., Wolf, M. M., Madden, M. Z., Andrejeva, G., Sugiura, A., Contreras, D. C. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795 e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J. & DeBerardinis, R. J. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30, 434–446 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F. et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. 14, 1295–1304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McBrayer, S. K., Mayers, J. R., DiNatale, G. J., Shi, D. D., Khanal, J., Chakraborty, A. A. et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell 175, 101–116 e25 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tardito, S., Oudin, A., Ahmed, S. U., Fack, F., Keunen, O., Zheng, L. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors conducting this work represent the Chinese Glioma Cooperative Group (CGCG).

Author information

Authors and Affiliations

Authors

Contributions

W.Z., Z.Z. and W.M.: conceptualisation and supervision; F.W., Y.L. and G.L.: methodology, data curation and writing—original draft preparation; Y.Z. and Y.F.: data collection, software and writing—reviewing and editing.

Corresponding authors

Correspondence to Wen-Ping Ma, Zheng Zhao or Wei Zhang.

Ethics declarations

Ethics approval and consent to participate

This study was carried out in accordance with the Helsinki declaration and approved by the ethics committee of Tiantan hospital, and patient informed consents existed in these two public databases.

Consent to publish

Not applicable.

Data availability

All data in this study are available in TCGA, GLASS, GEO and CGGA datasets.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by National Natural Science Foundation of China (81672479, 82002994, 82002647 and 81702460) and Natural Science Foundation of Anhui Province (1908085QH335).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Liu, YW., Li, GZ. et al. Metabolic expression profiling stratifies diffuse lower-grade glioma into three distinct tumour subtypes. Br J Cancer 125, 255–264 (2021). https://doi.org/10.1038/s41416-021-01418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-021-01418-6

This article is cited by

Search

Quick links