Cellular and Molecular Biology

YES1 amplification confers trastuzumab–emtansine (T-DM1) resistance in HER2-positive cancer



Trastuzumab–emtansine (T-DM1), one of the most potent HER2-targeted drugs, shows impressive efficacy in patients with HER2-positive breast cancers. However, resistance inevitably occurs and becomes a critical clinical problem.


We modelled the development of acquired resistance by exposing HER2-positive cells to escalating concentrations of T-DM1. Signalling pathways activation was detected by western blotting, gene expression was analysed by qRT-PCR and gene copy numbers were determined by qPCR. The role of Yes on resistance was confirmed by siRNA-mediated knockdown and stable transfection-mediated overexpression. The in vivo effects were tested in xenograft model.


We found that Yes is overexpressed in T-DM1–resistant cells owing to amplification of chromosome region 18p11.32, where the YES1 gene resides. Yes activated multiple proliferation-related signalling pathways, including EGFR, PI3K and MAPK, and led to cross-resistance to all types of HER2-targeted drugs, including antibody-drug conjugate, antibody and small molecule inhibitor. The outcome of this cross-resistance may be a clinically incurable condition. Importantly, we found that inhibiting Yes with dasatinib sensitised resistant cells in vitro and in vivo.


Our study revealed that YES1 amplification conferred resistance to HER2-targeted drugs and suggested the potential application of the strategy of combining HER2 and Yes inhibition in the clinic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: BT-474/R1-7 cells are resistant to HER2-targeted drugs.
Fig. 2: SFK plays a critical role in mediating resistance in BT-474/R1-7 cells.
Fig. 3: Yes is responsible for aberrant activation of signalling pathways in BT-474/R1-7 cells.
Fig. 4: Chromosome region 18p11.32 is amplified in BT-474/R1-7 cells.
Fig. 5: Ectopic expression of Yes confers T-DM1 resistance.
Fig. 6: Yes inhibition overcomes T-DM1 resistance in vivo.


  1. 1.

    Moasser, M. M. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 26, 6577–6592 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. 2.

    Escriva-de-Romani, S., Arumi, M., Bellet, M. & Saura, C. HER2-positive breast cancer: current and new therapeutic strategies. Breast 39, 80–88 (2018).

    PubMed  Google Scholar 

  3. 3.

    Rexer, B. N. & Arteaga, C. L. Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. Crit. Rev. Oncog. 17, 1–16 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Doroshow, D. B. & LoRusso, P. M. Trastuzumab emtansine: determining its role in management of HER2 + breast cancer. Future Oncol. 14, 589–602 (2018).

    PubMed  CAS  Google Scholar 

  5. 5.

    Lewis Phillips, G. D., Li, G., Dugger, D. L., Crocker, L. M., Parsons, K. L., Mai, E. et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68, 9280–9290 (2008).

    PubMed  CAS  Google Scholar 

  6. 6.

    Junttila, T. T., Li, G., Parsons, K., Phillips, G. L. & Sliwkowski, M. X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 128, 347–356 (2011).

    PubMed  CAS  Google Scholar 

  7. 7.

    Welslau, M., Dieras, V., Sohn, J. H., Hurvitz, S. A., Lalla, D., Fang, L. et al. Patient-reported outcomes from EMILIA, a randomised phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer. Cancer 120, 642–651 (2014).

    PubMed  CAS  Google Scholar 

  8. 8.

    Dieras, V., Miles, D., Verma, S., Pegram, M., Welslau, M., Baselga, J. et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 732–742 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Collins, D. M., Bossenmaier, B., Kollmorgen, G., Niederfellner, G. Acquired resistance to antibody-drug conjugates. Cancers 11, 394 (2019).

  10. 10.

    Mercogliano, M. F., De Martino, M., Venturutti, L., Rivas, M. A., Proietti, C. J., Inurrigarro, G. et al. TNFalpha-induced mucin 4 expression elicits trastuzumab resistance in HER2-positive breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 23, 636–648 (2017).

    CAS  Google Scholar 

  11. 11.

    Wang, H., Wang, W., Xu, Y., Yang, Y., Chen, X., Quan, H. et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 108, 1458–1468 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Rios-Luci, C., Garcia-Alonso, S., Diaz-Rodriguez, E., Nadal-Serrano, M., Arribas, J., Ocana, A. et al. Resistance to the antibody-drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 77, 4639–4651 (2017).

    PubMed  CAS  Google Scholar 

  13. 13.

    Loganzo, F., Tan, X., Sung, M., Jin, G., Myers, J. S., Melamud, E. et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol. Cancer Ther. 14, 952–963 (2015).

    PubMed  CAS  Google Scholar 

  14. 14.

    Saatci, O., Borgoni, S., Akbulut, O., Durmus, S., Raza, U., Eyupoglu, E. et al. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene 37, 2251–2269 (2018).

    PubMed  CAS  Google Scholar 

  15. 15.

    Wang, L., Wang, Q., Gao, M., Fu, L., Li, Y., Quan, H. et al. STAT3 activation confers trastuzumab-emtansine (T-DM1) resistance in HER2-positive breast cancer. Cancer Sci. 109, 3305–3315 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Wang, Q., Quan, H., Zhao, J., Xie, C., Wang, L. & Lou, L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Lett. 340, 43–50 (2013).

    PubMed  CAS  Google Scholar 

  17. 17.

    Rosenbluh, J., Nijhawan, D., Cox, A. G., Li, X., Neal, J. T., Schafer, E. J. et al. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Wang, L., Yang, C., Xie, C., Jiang, J., Gao, M., Fu, L. et al. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Cancer Sci. 110, 1064–1075 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Wang, L., Xu, Y., Fu, L., Li, Y. & Lou, L. (5R)-5-hydroxytriptolide (LLDT-8), a novel immunosuppressant in clinical trials, exhibits potent antitumor activity via transcription inhibition. Cancer Lett. 324, 75–82 (2012).

  20. 20.

    Barok, M., Joensuu, H. & Isola, J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 16, 209 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Montero, J. C., Seoane, S., Ocana, A. & Pandiella, A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin. Cancer Res. 17, 5546–5552 (2011).

    PubMed  CAS  Google Scholar 

  22. 22.

    Hantschel, O., Rix, U. & Superti-Furga, G. Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leuk. Lymphoma 49, 615–619 (2008).

    PubMed  CAS  Google Scholar 

  23. 23.

    Kim, L. C., Song, L. & Haura, E. B. Src kinases as therapeutic targets for cancer. Nat. Rev. Clin. Oncol. 6, 587–595 (2009).

    PubMed  Google Scholar 

  24. 24.

    Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    PubMed  CAS  Google Scholar 

  25. 25.

    Zhang, S., Huang, W. C., Li, P., Guo, H., Poh, S. B., Brady, S. W. et al. Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat. Med. 17, 461–469 (2011).

    PubMed  Google Scholar 

  26. 26.

    Albertson, D. G. Gene amplification in cancer. Trends Genet. 22, 447–455 (2006).

    PubMed  CAS  Google Scholar 

  27. 27.

    El-Hashim, A. Z., Khajah, M. A., Renno, W. M., Babyson, R. S., Uddin, M., Benter, I. F. et al. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kdelta/Akt and NFkappaB induction in a murine asthma model. Sci. Rep. 7, 9919 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Le, X. F. & Bast, R. C. Jr. Src family kinases and paclitaxel sensitivity. Cancer Biol. Ther. 12, 260–269 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Johnson, F. M. & Gallick, G. E. SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents Med. Chem. 7, 651–659 (2007).

    PubMed  CAS  Google Scholar 

  30. 30.

    Fang, Z., Yin, S., Sun, R., Zhang, S., Fu, M., Wu, Y. et al. miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1. Mol. Cancer 16, 139 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Shen, Y., Chen, F. & Liang, Y. MicroRNA-133a inhibits the proliferation of non-small cell lung cancer by targeting YES1. Oncol. Lett. 18, 6759–6765 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Hamanaka, N., Nakanishi, Y., Mizuno, T., Horiguchi-Takei, K., Akiyama, N., Tanimura, H. et al. YES1 is a targetable oncogene in cancers harboring YES1 gene amplification. Cancer Res. 79, 5734–5745 (2019).

    PubMed  CAS  Google Scholar 

  33. 33.

    Wheeler, D. L., Iida, M., Kruser, T. J., Nechrebecki, M. M., Dunn, E. F., Armstrong, E. A. et al. Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol. Ther. 8, 696–703 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Lee, L. F., Louie, M. C., Desai, S. J., Yang, J., Chen, H. W., Evans, C. P. et al. Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene 23, 2197–2205 (2004).

    PubMed  CAS  Google Scholar 

  35. 35.

    Riggins, R. B., Thomas, K. S., Ta, H. Q., Wen, J., Davis, R. J., Schuh, N. R. et al. Physical and functional interactions between Cas and c-Src induce tamoxifen resistance of breast cancer cells through pathways involving epidermal growth factor receptor and signal transducer and activator of transcription 5b. Cancer Res. 66, 7007–7015 (2006).

    PubMed  CAS  Google Scholar 

  36. 36.

    Chen, T., Pengetnze, Y. & Taylor, C. C. Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3. Mol. Cancer Ther. 4, 217–224 (2005).

    PubMed  CAS  Google Scholar 

  37. 37.

    George, J. A., Chen, T. & Taylor, C. C. SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells. Cancer Res. 65, 10381–10388 (2005).

    PubMed  CAS  Google Scholar 

  38. 38.

    Fan, P. D., Narzisi, G., Jayaprakash, A. D., Venturini, E., Robine, N., Smibert, P. et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc. Natl Acad. Sci. USA 115, E6030–E6038 (2018).

    PubMed  CAS  Google Scholar 

  39. 39.

    Ichihara, E., Westover, D., Meador, C. B., Yan, Y., Bauer, J. A., Lu, P. et al. SFK/FAK Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-Resistant Models of EGFR-Mutant Lung Cancer. Cancer Res. 77, 2990–3000 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Hermsen, M., Guervos, M. A., Meijer, G., Baak, J., van Diest, P., Marcos, C. A. et al. New chromosomal regions with high-level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization. J. Pathol. 194, 177–182 (2001).

    PubMed  CAS  Google Scholar 

  41. 41.

    Hinze, R., Schagdarsurengin, U., Taubert, H., Meye, A., Wurl, P., Holzhausen, H. J. et al. Assessment of genomic imbalances in malignant fibrous histiocytomas by comparative genomic hybridization. Int J. Mol. Med. 3, 75–79 (1999).

    PubMed  CAS  Google Scholar 

  42. 42.

    Sonoda, G., Palazzo, J., du Manoir, S., Godwin, A. K., Feder, M., Yakushiji, M. et al. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosomes Cancer 20, 320–328 (1997).

    PubMed  CAS  Google Scholar 

  43. 43.

    Nakakuki, K., Imoto, I., Pimkhaokham, A., Fukuda, Y., Shimada, Y., Imamura, M. et al. Novel targets for the 18p11.3 amplification frequently observed in esophageal squamous cell carcinomas. Carcinogenesis 23, 19–24 (2002).

    PubMed  CAS  Google Scholar 

  44. 44.

    Marsh, S. Thymidylate synthase pharmacogenetics. Invest. N. Drugs 23, 533–537 (2005).

    CAS  Google Scholar 

  45. 45.

    Wang, W., Marsh, S., Cassidy, J. & McLeod, H. L. Pharmacogenomic dissection of resistance to thymidylate synthase inhibitors. Cancer Res. 61, 5505–5510 (2001).

    PubMed  CAS  Google Scholar 

  46. 46.

    Watson, R. G., Muhale, F., Thorne, L. B., Yu, J., O’Neil, B. H., Hoskins, J. M. et al. Amplification of thymidylate synthetase in metastatic colorectal cancer patients pretreated with 5-fluorouracil-based chemotherapy. Eur. J. Cancer 46, 3358–3364 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Krop, I. E., Lin, N. U., Blackwell, K., Guardino, E., Huober, J., Lu, M. et al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann. Oncol. 26, 113–119 (2015).

    PubMed  CAS  Google Scholar 

  48. 48.

    Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    PubMed  CAS  Google Scholar 

  49. 49.

    Moy, B., Kirkpatrick, P., Kar, S. & Goss, P. Lapatinib. Nat. Rev. Drug Discov. 6, 431–432 (2007).

    PubMed  CAS  Google Scholar 

  50. 50.

    Mayer, E. L. & Krop, I. E. Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. Clin. Cancer Res. 16, 3526–3532 (2010).

    PubMed  CAS  Google Scholar 

  51. 51.

    Miller, A. A., Pang, H., Hodgson, L., Ramnath, N., Otterson, G. A., Kelley, M. J. et al. A phase II study of dasatinib in patients with chemosensitive relapsed small cell lung cancer (Cancer and Leukemia Group B 30602). J. Thorac. Oncol. 5, 380–384 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Sharma, M. R., Wroblewski, K., Polite, B. N., Knost, J. A., Wallace, J. A., Modi, S. et al. Dasatinib in previously treated metastatic colorectal cancer: a phase II trial of the University of Chicago Phase II Consortium. Invest. N. Drugs 30, 1211–1215 (2012).

    CAS  Google Scholar 

Download references


Not applicable.

Author information




L.W., H.Q. and L.L. conceived and designed the study; L.W., Q.W. and P.X. developed the methodologies and acquired the data; L.F., Y.L. and H.F. performed in vivo experiments; L.W. and L.L. wrote and revised the paper. All authors read and approved the final paper.

Corresponding authors

Correspondence to Haitian Quan or Liguang Lou.

Ethics declarations

Ethics approval and consent to participate

Animal studies were carried out in accordance with guidelines of the Institutional Animal Care and Use Committee at the Shanghai Institute of Materia Medica, Chinese Academy of Sciences. The human BT-474 and SK-OV-3 cell lines were obtained from the American Type Culture Collection (Manassas, VA, USA).

Consent to publish


Data availability

The data generated during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by National Natural Science Foundation of China (№ 81502636); the Shanghai Science and Technology Committee (№ 18DZ2293200); and the Yunnan Provincial Science and Technology Department (№ 2017ZF010).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, Q., Xu, P. et al. YES1 amplification confers trastuzumab–emtansine (T-DM1) resistance in HER2-positive cancer. Br J Cancer 123, 1000–1011 (2020). https://doi.org/10.1038/s41416-020-0952-1

Download citation