Abstract
Background
Regorafenib is an inhibitor of multiple kinases with aberrant expression and activity in neuroblastoma tumours that have potential roles in neuroblastoma pathogenesis.
Methods
We evaluated neuroblastoma cells treated with regorafenib for cell viability and confluence, and analysed treated cells for apoptosis and cell cycle progression. We evaluated the efficacy of regorafenib in vivo using an orthotopic xenograft model. We evaluated regorafenib-mediated inhibition of kinase targets and performed reverse-phase protein array (RPPA) analysis of neuroblastoma cells treated with regorafenib. Lastly, we evaluated the efficacy and effects of the combination of regorafenib and 13-cis-retinoic acid on intracellular signalling.
Results
Regorafenib treatment resulted in reduced neuroblastoma cell viability and confluence, with both induction of apoptosis and of cell cycle arrest. Regorafenib treatment inhibits known receptor tyrosine kinase targets RET and PDGFRβ and intracellular signalling through the RAS/MAPK, PI3K/Akt/mTOR and Fos/Jun pathways. Regorafenib is effective against neuroblastoma tumours in vivo, and the combination of regorafenib and 13-cis-retinoic acid demonstrates enhanced efficacy compared with regorafenib alone.
Conclusions
The effects of regorafenib on multiple intracellular signalling pathways and the potential additional efficacy when combined with 13-cis-retinoic acid represent opportunities to develop treatment regimens incorporating regorafenib for children with neuroblastoma.
Access options
Subscribe to Journal
Get full journal access for 1 year
$399.00
only $16.63 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.






References
- 1.
Matthay, K. K., Maris, J. M., Schleiemacher, G., Nakagawara, A., Mackall, C. L. Diller, L. et al. Neuroblastoma. Nat. Rev. Dis. Prim. 2, 1–21 (2016).
- 2.
Whittle, S. B., Smith, V., Doherty, E., Zhao, S., McCarty, S. & Zage, P. E. Overview and recent advances in the treatment of neuroblastoma. Exp. Rev. Anticancer Ther. 17, 369–386 (2017).
- 3.
Lau, L., Tai, D., Weitzman, S., Grant, R., Baruchel, S. & Malkin, D. Factors influencing survival in children with recurrent neuroblastoma. J. Pediatr. Hematol. Oncol. 26, 227–232 (2004).
- 4.
London, W. B., Castel, V., Monclair, T., Ambros, P. F., Pearson, A. D. J., Cohn, S. L. et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group Project. J. Clin. Oncol. 29, 3286–3292 (2011).
- 5.
London, W. B., Bagatell, R., Weigel, B. J., Fox, E., Guo, D., Van Ryn, C. et al. Historical time to disease progression and progression-free survival in patients with recurrent/refractory neuroblastoma treated in the modern era on Children’s Oncology Group early-phase trials. Cancer 123, 4914–4923 (2017).
- 6.
Cohen, P. S., Chan, J. P., Lipkunskaya, M., Biedler, J. L. & Seeger, R. C. Expression of stem cell factor and c-kit in human neuroblastoma. Blood 84, 3465–3472 (1994).
- 7.
Eggert, A., Ikegaki, N., Kwiatkowski, J., Zhao, H., Brodeur, G. M. & Himelstein, B. P. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin. Cancer Res. 6, 1900–1908 (2000).
- 8.
Meyers, M. B., Shen, W. P., Spengler, B. A., Ciccarone, V., O’Brien, J. P., Donner, D. B. et al. Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J. Cell Biochem. 38, 87–97 (1998).
- 9.
Brodeur, G. M., Minturn, J. E., Ho, R., Simpson, A. M., Iyer, R., Varela, C. et al. Trk receptor expression and inhibition in neuroblastoma. Clin. Cancer Res. 15, 3244–3250 (2009).
- 10.
Janet, T., Ludecke, G., Otten, U. & Unsicker, K. Heterogeneity of human neuroblastoma cell lines in their proliferative responses to basic FGF, NGF, and EGF: correlation with expression of growth factors and growth factor receptors. J. Neurosci. Res. 40, 707–715 (1995).
- 11.
Matsui, T., Sano, K., Tsukamoto, T., Ito, M., Takaishi, T., Nakata, H. et al. Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling. J. Clin. Invest. 92, 1153–1160 (1993).
- 12.
Shimada, A., Hirato, J., Kuroiwa, M., Kukuchi, A., Hanada, R., Wakai, K. et al. Expression of KIT and PDGFR is associated with a good prognosis in neuroblastoma. Pediatr. Blood Cancer 50, 213–217 (2008).
- 13.
Meister, B., Grunebach, F., Bautz, F., Brugger, W., Fink, F. M., Kanz, L. et al. Expression of vascular endothelial growth factor (VEGF) and its receptors in human neuroblastoma. Eur. J. Cancer 35, 445–449 (1999).
- 14.
Langer, I., Vertongen, P., Perret, J., Fontaine, J., Atassi, G. & Robberecht, P. Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in human neuroblastomas. Med. Pediatr. Oncol. 34, 386–393 (2000).
- 15.
Fakhari, M., Pullirsch, D., Paya, K., Abraham, D., Hofbauer, R. & Aharinejad, S. Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma. J. Pediatr. Surg. 37, 582–587 (2002).
- 16.
Hecht, M., Papoutsi, M., Tran, H. D., Wilting, J. & Schweigerer, L. Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res. 64, 6109–6118 (2004).
- 17.
Ho, R., Minturn, J. E., Hishiki, T., Zhao, H., Wang, Q., Cnaan, A. et al. Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor. Cancer Res. 65, 9868–9875 (2005).
- 18.
Richards, K. N., Zweidler-McKay, P. A., Van Roy, N., Speleman, F., Trevino, J., Zage, P. E. et al. Signaling of ERBB receptor tyrosine kinases promotes neuroblastoma growth in vitro and in vivo. Cancer 116, 3233–3243 (2010).
- 19.
Izycka-Swieszewska, E., Wozniak, A., Drozynska, E., Kot, J., Grajkowska, W., Klepacka, T. et al. Expression and significance of HER family receptors in neuroblastic tumors. Clin. Exp. Metastasis 28, 271–282 (2011).
- 20.
Crosswell, H. E., Dasgupta, A., Alvarado, C. S., Watt, T., Christensen, J. G., De, P. et al. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells. BMC Cancer 9, 411 (2009).
- 21.
Wilhelm, S. M., Dumas, J., Adnane, L., Lynch, M., Carter, C. A., Schütz, G. et al. Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J. Cancer 129, 245–255 (2011).
- 22.
FDA approves regorafenib (Stivarga) for metastatic colorectal cancer. Oncology 26, 896 (2012).
- 23.
FDA approves regorafenib (Stivarga) for GIST. Oncology 27, 164 (2013).
- 24.
Regorafenib approved for liver cancer. Cancer Discov 7, 660 (2017).
- 25.
Strumberg, D. & Schultheis, B. Regorafenib for cancer. Expert Opin. Investig. Drugs 21, 879–889 (2012).
- 26.
Daudigeos-Dubus, E., Le Dret, L., Lanvers-Kaminsky, C., Bawa, O., Opolon, P., Vievard, A. et al. Regorafenib: antitumor activity upon mono and combination therapy in preclinical pediatric malignancy models. PLoS ONE 10, e0142612 (2015).
- 27.
Woodfield, S. E., Zhang, L., Scorsone, K., Liu, Y. & Zage, P. E. Binimetinib Inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer 16, 172 (2016).
- 28.
Scorsone, K., Zhang, L., Woodfield, S. E., Hicks, J. & Zage, P. E. The novel kinase inhibitor EMD1214063 is effective against neuroblastoma. Invest New Drugs 32, 815–824 (2014).
- 29.
Zhang, L., Scorsone, K., Woodfield, S. E. & Zage, P. E. Sensitivity of neuroblastoma to the novel kinase inhibitor cabozantinib is mediated by ERK inhibition. Cancer Chemother. Pharm. 76, 977–987 (2015).
- 30.
Schneider, M. J., Cyran, C. C., Nikolaou, K., Hirner, H., Reiser, M. F. & Dietrich, O. Monitoring early response to anti-angiogenic therapy: diffusion-weighted magnetic resonance imaging and volume measurements in colon carcinoma xenografts. PLos ONE 9, e106970 (2014).
- 31.
Flynn, S., Lesperance, J., Macias, A., Phanhthilath, N., Paul, M. R., Kim, J. W. et al. The Multikinase Inhibitor RXDX-105 is effective against neuroblastoma in vitro and in vivo. Oncotarget 10, 6323–6333 (2019).
- 32.
Dong, S., Jia, C., Zhang, S., Fan, G., Li, Y., Shan, P. et al. The REGγ proteasome regulates hepatic lipid metabolism through inhibition of autophagy. Cell Metab. 18, 380–391 (2013).
- 33.
Chang, C. H., Zhang, M., Rajapakshe, K., Coarfa, C., Edwards, D., Huang, S. et al. Mammary stem cells and tumor-initiating cells are more resistant to apoptosis and exhibit increased DNA repair activity in response to DNA damage. Stem Cell Rep. 5, 378–391 (2015).
- 34.
Whittle, S. B., Patel, K., Zhang, L., Woodfied, S. E., Du, M., Smith, V. et al. The novel kinase inhibitor ponatinib is an effective anti-angiogenic agent against neuroblastoma. Invest New Drugs 34, 685–692 (2016).
- 35.
Matthay, K. K., Reynolds, C. P., Seeger, R. C., Shimada, H., Adkins, E. S., Haas-Kogan D. et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: A Children’s Oncology Group Study. J. Clin. Oncol. 27, 1007–1013 (2009).
- 36.
Zage, P. E., Zeng, L., Palla, S., Fang, W., Nilsson, M. B., Heymach, J. V. et al. A novel therapeutic combination for neuroblastoma: the VEGFR/EGFR/RET inhibitor vandetanib with 13-cis-retinoic acid. Cancer 116, 2465–2475 (2010).
- 37.
Nakamura, T., Ishizaka, Y., Nagao, M., Hara, M. & Ishikawa, T. Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin. J. Pathol. 172, 255–260 (1994).
- 38.
Hishiki, T., Nimura, Y., Isogai, E., Kondo, K., Ichimiya, S., Nakamura, Y. et al. Glial cell line-derived neurotrophic factor/neurturin-induced differentiation and its enhancement by retinoic acid in primary human neuroblastomas expressing c-Ret, GFR alpha-1, and GFR alpha-2. Cancer Res. 58, 2158–2165 (1998).
- 39.
Iwamoto, T., Taniguchi, M., Wajjwalku, W., Nakashima, I. & Takahashi, M. Neuroblastoma in a transgenic mouse carrying a metallothionein/ret fusion gene. Br. J. Cancer 67, 504–507 (1993).
- 40.
Marshall, G. M., Peaston, A. E., Hocker, J. E., Smith, S. A., Hansford, L. M., Tobias, V. et al. Expression of multiple endocrine neoplasia 2B RET in neuroblastoma cells alters cell adhesion in vitro, enhances metastatic behavior in vivo, and activates jun kinase. Cancer Res. 57, 5399–5405 (1997).
- 41.
Komuro, H., Kaneko, S., Kaneko, M. & Nakanishi, Y. Expression of angiogenic factors and tumor progression in human neuroblastoma. J. Cancer Res. Clin. Oncol. 127, 739–743 (2001).
- 42.
Beppu, K., Jaboine, J., Merchant, M. S., Mackall, C. L. & Thiele, C. J. Effect of imatinib mesylate on neuroblastoma tumorigenesis and vascular endothelial growth factor expression. J. Natl Cancer Inst. 96, 46–55 (2004).
- 43.
Schubbert, S., Shannon, K. & Bollag, G. Hyperactive ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007).
- 44.
Shukla, N., Ameur, N., Yilmaz, I., Nafa, K., Lau, C. Y., Marchetti, A. et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin. Cancer Res. 18, 748–757 (2012).
- 45.
Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D. et al. The Genetic Landscape of High-Risk Neuroblastoma. Nat. Genet. 45, 279–284 (2013).
- 46.
Eleveld, T. F., Oldridge, D. A., Bernard, V., Koster, J., Daage, L. C., Diskin, S. J. et al. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat. Genet 47, 864–871 (2015).
- 47.
King, D., Yeomanson, D. & Bryant, H. E. PI3King the lock: targeting the PI3K/Akt/mTOR pathway as a novel therapeutic strategy in neuroblastoma. J. Pediatr. Hematol. Oncol. 37, 245–251 (2015).
- 48.
Becher, O. J., Millard, N. E., Modak, S., Kushner, B. H., Haque, S., Spasojevic, I. et al. A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS ONE 12, e0178593 (2017).
- 49.
Matsumoto, K., Shichino, H., Kawamoto, H., Kosaka, Y., Chin, M., Kato, K. et al. Phase I study of perifosine monotherapy in patients with recurrent or refractory neuroblastoma. Pediatr. Blood Cancer 64, e26623 (2017).
- 50.
Becher, O. J., Gilheeney, S. W., Khakoo, Y., Lyden, D. C., Haque, S., De Braganca, K. C. et al. A phase I study of perifosine with temsirolimus for recurrent pediatric solid tumors. Pediatr. Blood Cancer 64, e26409 (2017).
- 51.
Kushner, B. H., Cheung, N. V., Modak, S., Becher, O. J., Basu, E. M., Roberts, S. S. et al. A phase I/Ib trial targeting the Pi3k/Akt pathway using perifosine: Long-term progression-free survival of patients with resistant neuroblastoma. Int J. Cancer 140, 480–484 (2017).
- 52.
Spunt, S. L., Grupp, S. A., Vik, T. A., Santana, V. M., Greenblatt, D. J., Clancy, J. et al. Phase I study of temsirolimus in pediatric patients with recurrent/refractory solid tumors. J. Clin. Oncol. 29, 2933–2940 (2011).
- 53.
Sheikh, A., Takatori, A., Hossain, M. S., Hasan, M. K., Tagawa, M., Nagase, H. et al. Unfavorable neuroblastoma prognostic factor NLRR2 inhibits cell differentiation by transcriptional induction through JNK pathway. Cancer Sci. 107, 1223–1223 (2016).
- 54.
Fey, D., Halasz, M., Dreidax, D., Kennedy, S. P., Hastings, J. F., Rauch, N. et al. Signaling pathway models as biomarkers: patient-specific simulations of JNK activity predict the survival of neuroblastoma patients. Sci. Signal 8, ra130 (2015).
- 55.
Schmieder, R., Hoffmann, J., Becker, M., Bhargava, A., Müller, T., Kahmann, N. et al. Regorafenib (BAY 73–4506): antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J. Cancer 135, 1487–1496 (2014).
- 56.
Carr, B. I., D’Alessandro, R., Refolo, M. G., Iacovazzi, P. A., Lippolis, C., Messa, C. et al. Effects of low concentrations of regorafenib and sorafenib on human HCC cell AFP, migration, invasion and growth in vitro. J. Cell Physiol. 228, 1344–1350 (2013).
- 57.
D’Alessandro, R., Refolo, M. G., Lippolis, C., Messa, C., Cavallini, A., Rossi, R. et al. Reversibility of regorafenib effects in hepatocellular carcinoma cells. Cancer Chemother. Pharm. 72, 869–877 (2013).
- 58.
Chen, Z., Zhao, Y., Yu, Y., Pang, J. C., Woodfield, S. E., Tao, L. et al. Small molecule inhibitor regorafenib inhibits RET signaling in neuroblastoma cells and effectively suppresses tumor growth in vivo. Oncotarget 8, 104090–104103 (2017).
- 59.
Krishnamoorthy, S. K., Relias, V., Sebastian, S., Jayaraman, V. & Said, M. W. Management of regorafenib-related toxicities: a review. Ther. Adv. Gastroenterol. 8, 285–297 (2015).
- 60.
Schvartsman, G., Wagner, M. J., Amini, B., Zobniw, C. M., Trinh, V. A., Barbo, A. G. et al. Treatment patterns, efficacy and toxicity of regorafenib in gastrointestinal stromal tumour patients. Sci. Rep. 7, 9519 (2017).
- 61.
Mross, K., Frost, A., Steinbild, S., Hadbom, S., Buchert, M., Fasoi, U. et al. A phase I dose-escalation study of regorafenib (BAY 73-4506), an Inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin. Cancer Res. 18, 2658–2667 (2012).
- 62.
Strumberg, D., Scheulen, M. E., Schultheis, B., Richly, H., Frost, A., Buchert, A. et al. Regorafenib (BAY 73-4506) in advanced colorectal cancer: A phase I study. Br. J. Cancer 106, 1722–1727 (2012).
- 63.
Miller, W. H. The emerging role of retinoids and retinoic acid metabolism blocking agents in the treatment of cancer. Cancer 83, 1471–1482 (1998).
- 64.
Sidell, N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J. Natl Cancer Inst. 68, 589–596 (1982).
- 65.
Sidell, N., Altman, A., Haussler, M. R. & Seeger, R. C. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res. 148, 21–30 (1983).
- 66.
Thiele, C. J., Reynolds, C. P. & Israel, M. A. Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313, 404–406 (1985).
- 67.
Bunone, G., Borrello, M. G., Picetti, R., Bongarzone, I., Peverali, F. A., de Franciscis, V. et al. Induction of RET proto-oncogene expression in neuroblastoma cells precedes neuronal differentiation and is not mediated by protein synthesis. Exp. Cell Res. 217, 92–99 (1995).
- 68.
D’Aleesio, A., De Vita, G., Cali, G., Nitsch, L., Fusco, A., Vecchio, G. et al. Expression of the RET oncogene induces differentiation of SK-N-BE neuroblastoma cells. Cell Growth Differ. 6, 1387–1394 (1995).
- 69.
Oppenheimer, O., Cheung, N.-K. & Gerald, W. L. The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol. Cancer Ther. 6, 1300–1309 (2007).
- 70.
Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Cena, V. et al. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J. Neurochem. 75, 991–1003 (2000).
- 71.
Takada, N., Isogai, E., Kawamoto, Nakanishi, H., Todo, S. & Nakagawara, A. Retinoic acid-induced apoptosis of the CHP134 neuroblastoma cell line is associated with nuclear accumulation of p53 and is rescued by the GDNF/Ret signal. Med. Pediatr. Oncol. 36, 122–126 (2001).
Acknowledgements
Portions of this work have been published as an abstract (Subramonian et al., J Clin Oncol 2017; 35:10553) and presented as a poster at the American Society of Clinical Oncology Annual Meeting in June of 2017.
Author information
Affiliations
Contributions
D.S.: conceptualisation, data curation, formal analysis, investigation, methodology, validation and writing—review and editing. N.P.: data curation, formal analysis, investigation, validation, writing—original draft and writing—review and editing. H.R.: data curation, investigation, validation and writing—review and editing. S.F.: data curation, investigation, validation and writing—review and editing. Y.H.: data curation, investigation, validation and writing—review and editing. J.Z.: data curation, formal analysis, investigation, validation, writing—original draft and writing—review and editing. K.M.: data curation, formal analysis, investigation, supervision, validation and writing—review and editing. Q.M.: data curation, formal analysis, investigation, validation and writing—review and editing. S.H.: data curation, formal analysis, investigation, supervision, validation and writing—review and editing. J.L.: data curation, investigation, validation and writing—review and editing. P.E.Z.: conceptualisation, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, writing—original draft and writing—review and editing.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
All animal experiments were performed in accordance with relevant guidelines and regulations, and all mice were treated according to protocols approved by the Institutional Animal Care and Use Committee at UCSD; no human subjects were included in these experiments.
Consent to publish
Not applicable; no human subjects were included in these experiments.
Data availability
All data generated or analysed during this study are included in this published article (and the Supplementary information files).
Competing interests
This study was supported by Bayer, AG with study drug and research funding (to P.E.Z.). The authors declare there are no other competing interests.
Funding information
This study was supported by Bayer, AG with study drug and research funding (to P.E.Z.). This work was supported in part by a Cancer Prevention & Research Institute of Texas Proteomics & Metabolomics Core Facility Support Award (RP170005) (to S.H.) and an NCI Cancer Center Support Grant to the Antibody-based Proteomics Core/Shared Resource at Baylor College of Medicine (P30CA125123) (to S.H.).
Additional information
Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Subramonian, D., Phanhthilath, N., Rinehardt, H. et al. Regorafenib is effective against neuroblastoma in vitro and in vivo and inhibits the RAS/MAPK, PI3K/Akt/mTOR and Fos/Jun pathways. Br J Cancer 123, 568–579 (2020). https://doi.org/10.1038/s41416-020-0905-8
Received:
Revised:
Accepted:
Published:
Issue Date:
Further reading
-
Downregulation of circRNA_100876 Inhibited Progression of NSCLC In Vitro via Targeting miR-636
Technology in Cancer Research & Treatment (2020)