Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular and Molecular Biology

miR-199b-5p-DDR1-ERK signalling axis suppresses prostate cancer metastasis via inhibiting epithelial-mesenchymal transition

A Correction to this article was published on 13 January 2021

This article has been updated

Abstract

Background

The investigation of underlying mechanism and the exploitation of novel therapies for metastatic prostate cancer (PCa) are still urgently needed. miR-199b-5p has been suggested to function as tumour suppressor in various human cancers. However, the clinical significance and role of miR-199b-5p in PCa remain unclear.

Methods

The current study sought to investigate the expression status of miR-199b-5p in PCa and the involved molecular mechanisms in PCa metastasis by using bioinformatics analyses, loss-and gain-of-functions and rescue experiments in vitro and in vivo.

Results

We demonstrated that miR-199b-5p was significantly downregulated in metastatic PCa tissues and cells when compared with the normal prostate tissue, the localised disease, the weakly metastatic and androgen-dependent PCa cell and the normal prostate epithelial cell. We also found that miR-199b-5p drastically suppressed PCa cell proliferation, migration and invasion in vitro and inhibited xenografts tumour growth and metastasis in vivo. Mechanistically, our results showed that miR-199b-5p could inhibit discoidin domain receptor tyrosine kinase 1 (DDR1) expression by directly targeting its 3’-UTR, thereby hindering epithelial-mesenchymal transition (EMT)-associated traits, which were induced by DDR1 activating ERK signalling pathway. Moreover, PCa patients with low miR-199b-5p expression level had a remarkably shorter overall survival than those with high miR-199b-5p level, indicating an association of miR-199b-5p loss with poor prognosis in patients with PCa. Furthermore, DDR1 was upregulated in PCa, and significantly correlated with high Gleason score, advanced pathological stage, tumour metastasis and shorter overall survival.

Conclusions

Our study, for the first time, provide evidence of a tumour-suppressive function of miR-199b-5p in the invasion and metastasis of PCa, supporting the translational exploitation of miR-199b-5p-based therapeutic approaches for PCa metastases. Also, the miR-199b-5p-DDR1-ERK signalling axis identified in this study represents a novel mechanism of regulating EMT in PCa metastases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-199b-5p expression is remarkably downregulated in metastatic PCa tissue samples and cells, but independent of AR expression.
Fig. 2: miR-199b-5p inhibits tumour growth and metastasis in vivo.
Fig. 3: DDR1 is a functional target of miR-199b-5p in PCa.
Fig. 4: DDR1 affects ERK signalling pathway in PCa.
Fig. 5: DDR1 induces EMT phenotype in PCa.

Similar content being viewed by others

Change history

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  2. Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F. et al. Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016).

    Article  PubMed  Google Scholar 

  3. Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2014).

    Article  Google Scholar 

  4. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Suer, I., Guzel, E., Karatas, O. F., Creighton, C. J., Ittmann, M. & Ozen, M. MicroRNAs as prognostic markers in prostate cancer. Prostate 79, 265–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Zhu, Z., Wen, Y., Xuan, C., Chen, Q., Xiang, Q., Wang, J. et al. Identifying the key genes and microRNAs in prostate cancer bone metastasis by bioinformatics analysis. FEBS Open Biol. 10, 674–688 (2020).

    Article  CAS  Google Scholar 

  7. Chiu, L. Y., Kishnani, P. S., Chuang, T. P., Tang, C. Y., Liu, C. Y., Bali, D. et al. Identification of differentially expressed microRNAs in human hepatocellular adenoma associated with type I glycogen storage disease: a potential utility as biomarkers. J. Gastroenterol. 49, 1274–1284 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lai, Y., Quan, J., Lin, C., Li, H., Hu, J., Chen, P. et al. miR-199b-5p serves as a tumor suppressor in renal cell carcinoma. Exp. Ther. Med. 16, 436–444 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Lin, X., Qiu, W., Xiao, Y., Ma, J., Xu, F., Zhang, K. et al. MiR-199b-5p suppresses tumor angiogenesis mediated by vascular endothelial cells in breast cancer by targeting ALK1. Front. Genet. 10, 1397 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Favreau, A. J., Cross, E. L. & Sathyanarayana, P. miR-199b-5p directly targets PODXL and DDR1 and decreased levels of miR-199b-5p correlate with elevated expressions of PODXL and DDR1 in acute myeloid leukemia. Am. J. Hematol. 87, 442–446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, S. J., Liu, F. Y., Zhang, A. H., Liang, H. F., Wang, Y., Ma, R. et al. MicroRNA-199b-5p attenuates TGF-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Br. J. Cancer 117, 233–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang, R., Zhao, S., Liu, L., Li, F., Li, E., Luo, L. et al. Knockdown of PSCA induces EMT and decreases metastatic potentials of the human prostate cancer DU145 cells. Cancer Cell Int. 16, 20 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu, L., Li, E., Luo, L., Zhao, S., Li, F., Wang, J. et al. PSCA regulates IL-6 expression through p38/NF-κB signaling in prostate cancer. Prostate 77, 1389–1400 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Li, E., Liu, L., Li, F., Luo, L., Zhao, S., Wang, J. et al. PSCA promotes prostate cancer proliferation and cell-cycle progression by up-regulating c-Myc. Prostate 77, 1563–1572 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao, Z., Ma, W., Zeng, G., Qi, D., Ou, L. & Liang, Y. Small interference RNA-mediated silencing of prostate stem cell antigen attenuates growth, reduces migration and invasion of human prostate cancer PC-3M cells. Urol. Oncol. 31, 343–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, Z., He, J., Kang, R., Zhao, S., Liu, L. & Li, F. RNA interference targeting PSCA suppresses primary tumor growth and metastasis formation of human prostate cancer xenografts in SCID mice. Prostate 76, 184–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, Z., Li, E., Luo, L., Zhao, S., Liu, L., Wang, J. et al. A PSCA/PGRN-NF-κB- integrin-α4 axis promotes prostate cancer cell adhesion to bone marrow endothelium and enhances metastatic potential. Mol. Cancer Res. 18, 501–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Azizi, R., Salemi, Z., Fallahian, F. & Aghaei, M. Inhibition of didscoidin domain receptor 1 reduces epithelial-mesenchymal transition and induce cell-cycle arrest and apoptosis in prostate cancer cell lines. J. Cell Physiol. 234, 19539–19552 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, B., Gu, Y., Hui, K., Huang, J., Xu, S., Wu, S. et al. AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urol. Oncol. 36, 472.e11–472.e20 (2018).

    Article  CAS  Google Scholar 

  21. Yin, B., Liu, Z., Wang, Y., Wang, X., Liu, W., Yu, P. et al. RON and c-Met facilitate metastasis through the ERK signaling pathway in prostate cancer cells. Oncol. Rep. 37, 3209–3218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, J., Ivanov, A. I., Fisher, P. B. & Fu, Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife 5, e10734 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fang, C., Wang, F. B., Li, Y. & Zeng, X. T. Down-regulation of miR-199b-5p is correlated with poor prognosis for breast cancer patients. Biomed. Pharmacother. 84, 1189–1193 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, A., Chen, Y., Liu, Y., Lai, Y. & Liu, D. miR-199b-5p inhibits triple negative breast cancer cell proliferation, migration and invasion by targeting DDR1. Oncol. Lett. 16, 4889–4896 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2018).

    Article  Google Scholar 

  26. Valencia, K., Ormazábal, C., Zandueta, C., Luis-Ravelo, D., Antón, I., Pajares, M. J. et al. Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin. Cancer Res. 18, 969–980 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Park, H. S., Kim, K. R., Lee, H. J., Choi, H. N., Kim, D. K., Kim, B. T. et al. Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. Oncol. Rep. 18, 1435–1441 (2007).

    CAS  PubMed  Google Scholar 

  28. Ram, R., Lorente, G., Nikolich, K., Urfer, R., Foehr, E. & Nagavarapu, U. Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J. Neurooncol. 76, 239–248 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Shen, Q., Cicinnati, V. R., Zhang, X., Iacob, S., Weber, F., Sotiropoulos, G. C. et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol. Cancer 9, 227 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shimada, K., Nakamura, M., Ishida, E., Higuchi, T., Yamamoto, H., Tsujikawa, K. et al. Prostate cancer antigen-1 contributes to cell survival and invasion through discoidin receptor 1 in human prostate cancer. Cancer Sci. 99, 39–45 (2008).

    CAS  PubMed  Google Scholar 

  31. Hao, M., Li, Y., Wang, J., Qin, J., Wang, Y., Ding, Y. et al. HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition. J. Pathol. 242, 409–420 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Wa, Q., Li, L., Lin, H., Peng, X., Ren, D., Huang, Y. et al. Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-β signaling in prostate cancer. Oncol. Rep. 39, 81–90 (2018).

    CAS  PubMed  Google Scholar 

  33. Bonci, D., Coppola, V., Patrizii, M., Addario, A., Cannistraci, A., Francescangeli, F. et al. A microRNA code for prostate cancer metastasis. Oncogene 35, 1180–1192 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Huang, S., Wa, Q., Pan, J., Peng, X., Ren, D., Huang, Y. et al. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J. Exp. Clin. Cancer Res. 36, 173 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NA

Author information

Authors and Affiliations

Authors

Contributions

S.Z., L.L. and Q.X. conducted most of in vitro and in vivo experiments, generated site-directed mutagenesis clones and performed tumour studies in mice. J.W. performed the immunoblotting analysis and captured images of immunohistochemistry. S.Z. and Y.L. conducted in vivo imaging and necropsy of mice. Z. Zhu performed bioinformatics analyses using online tools. J.L. coordinated acquisition of human PCa patient tissues, pathologically reviewed these patient specimens and scored them based on the staining intensity. Z. Zhao conceived, designed and supervised the work. Z. Zhao and S.Z. critically analysed data, prepared figures and tables and wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zhigang Zhao.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Medical Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University, and the written informed consent was obtained from all patients before participating in the study. Human specimens were handled and made anonymous in adherence to the ethical and legal standards. All procedures related to the animal experiments in this study were carried out in accordance with a mouse protocol, which was reviewed and approved by the Institutional Animal Care and Use Committee of the First Affiliated Hospital of Guangzhou Medical University.

Consent for publication

Not applicable.

Data availability

Data pertaining to this study are included in the manuscript. TargetScan, miRDB, miRWalk, miRTarBase, The Cancer Genome Atlas database (TCGA), Gene Expression Profiling Interactive Analysis (GEPIA), and the Gene Expression Omnibus (GEO) datasets used and/or analysed in this work are publicly available from http://www.targetscan.org/, http://mirdb.org/, http://zmf.umm.uni-heidelberg.de/, http://mirtarbase.mbc.nctu.edu/, https://tcgadata.nci.nih.gov/tcga/, http://gepia.cancer-pku.cn/ and http://www.ncbi.nlm.nih.gov/geo/, respectively. Other data that support the findings of this study are available from the corresponding author upon request.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by the grants from National Natural Science Foundation of China (81572537 to Z. Zhao), The Key Program of Natural Science Foundation of Guangdong Province (2015A030311007 to Z. Zhao), Science and Technology Program of Guangzhou (201607010376 to Z. Zhao) and The Major Program of Department of Guangdong Education (2017KZDXM067 to Z. Zhao).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhao, S., Luo, L. et al. miR-199b-5p-DDR1-ERK signalling axis suppresses prostate cancer metastasis via inhibiting epithelial-mesenchymal transition. Br J Cancer 124, 982–994 (2021). https://doi.org/10.1038/s41416-020-01187-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41416-020-01187-8

This article is cited by

Search

Quick links