Metastasis

Mutational drivers of cancer cell migration and invasion

Abstract

Genomic instability and mutations underlie the hallmarks of cancer—genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The model of cancer cell invasion.
Fig. 2: Chromosomal instability and cancer invasion.
Fig. 3: Gene alterations and cancer invasion.
Fig. 4: Intratumoural morphological heterogeneity of breast cancer as a model for studying the mechanisms of tumour cell invasion.

References

  1. 1.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Google Scholar 

  2. 2.

    Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Krakhmal, N. V., Zavyalova, M. V., Denisov, E. V., Vtorushin, S. V. & Perelmuter, V. M. Cancer invasion: patterns and mechanisms. Acta Nat. 7, 17–28 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Polacheck, W. J., Zervantonakis, I. K. & Kamm, R. D. Tumor cell migration in complex microenvironments. Cell. Mol. Life Sci. 70, 1335–1356 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Nieto, M. A., Huang, R. Y. Y. J., Jackson, R. A. A. & Thiery, J. P. P. Emt: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Muller, P. A. J., Vousden, K. H. & Norman, J. C. P53 and its mutants in tumor cell migration and invasion. J. Cell Biol. 192, 209–218 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Roszkowska, K. A., Gizinski, S., Sady, M., Gajewski, Z. & Olszewski, M. B. Gain-of-function mutations in p53 in cancer invasiveness and metastasis. Int. J. Mol. Sci. 21, 1334 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  8. 8.

    Vargas-Rondón, N., Villegas, V. E. & Rondón-Lagos, M. The role of chromosomal instability in cancer and therapeutic responses. Cancers 10, 1–21 (2018).

    Google Scholar 

  9. 9.

    Bakhoum, S. F., Ngo, B., Laughney, A. M., Cavallo, J. A., Murphy, C. J., Ly, P. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467–472 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Tijhuis, A. E., Johnson, S. C. & McClelland, S. E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 12, 1–21 (2019).

    Article  Google Scholar 

  11. 11.

    Couto, S. S. The pathologist’s slide reveals more than meets the eye: loss of heterozygosity and cancer biology. Vet. Pathol. 48, 236–244 (2010).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Zuo, H., Gandhi, M., Edreira, M. M., Hochbaum, D., Nimgaonkar, V. L., Zhang, P. et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res. 70, 1389–1397 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Katakowski, M., Zheng, X., Jiang, F., Rogers, T., Szalad, A. & Chopp, M. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma. Cancer Investig. 28, 1024–1030 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Heering, J., Erlmann, P. & Olayioye, M. A. Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. Exp. Cell Res. 315, 2505–2514 (2009).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Healy, K. D., Hodgson, L., Kim, T.-Y., Shutes, A., Maddileti, S., Juliano, R. L. et al. DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Mol. Carcinog. 47, 326–337 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Tripathi, V., Popescu, N. C. & Zimonjic, D. B. DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene 33, 724–733 (2014).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Wong, C.-M., Yam, J. W.-P., Ching, Y.-P., Yau, T.-O., Leung, T. H.-Y., Jin, D.-Y. et al. Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Res 65, 8861–8868 (2005).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Durkin, M. E., Yuan, B.-Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S. et al. DLC-1: a Rho GTPase-activating protein and tumour suppressor. J. Cell. Mol. Med. 11, 1185–1207 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Cai, Y., Crowther, J., Pastor, T., Abbasi Asbagh, L., Baietti, M. F., De Troyer, M. et al. Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell 29, 751–766 (2016).

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A. & Blobe, G. C. TβRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis 29, 528–535 (2008).

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Niu, N., Zhang, J., Zhang, N., Mercado-Uribe, I., Tao, F., Han, Z. et al. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis 5, e281 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Mirzayans, R., Andrais, B. & Murray, D. Roles of polyploid/multinucleated giant cancer cells in metastasis and disease relapse following anticancer treatment. Cancers 10, 1–11 (2018).

    Article  CAS  Google Scholar 

  25. 25.

    Zhang, S., Zhang, D., Yang, Z. & Zhang, X. Tumor budding, micropapillary pattern, and polyploidy giant cancer cells in colorectal cancer: current status and future prospects. Stem Cells Int. 2016, 1–8 (2016).

    Google Scholar 

  26. 26.

    Fei, F., Zhang, D., Yang, Z., Wang, S., Wang, X., Wu, Z. et al. The number of polyploid giant cancer cells and epithelial-mesenchymal transition-related proteins are associated with invasion and metastasis in human breast cancer. J. Exp. Clin. Cancer Res. 34, 1–13 (2015).

    Article  CAS  Google Scholar 

  27. 27.

    Fei, F., Zhang, M., Li, B., Zhao, L., Wang, H., Liu, L. et al. Formation of polyploid giant cancer cells involves in the prognostic value of neoadjuvant chemoradiation in locally advanced rectal cancer. J. Oncol. 2019, 1–15 (2019).

    Article  CAS  Google Scholar 

  28. 28.

    Niu, N., Mercado-Uribe, I. & Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36, 4887–4900 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Xuan, B., Ghosh, D., Ch, E. M., Clifton, E. M. & Dawson, M. R. Dysregulation in actin cytoskeletal organization drives increased stiffness and migratory persistence in polyploidal giant cancer cells. Sci. Rep. 8, 1–13 (2018).

    Article  CAS  Google Scholar 

  30. 30.

    Fei, F., Liu, K., Li, C., Du, J., Wei, Z., Li, B. et al. Molecular mechanisms by which S100A4 regulates the migration and invasion of PGCCs with their daughter cells in human colorectal cancer. Front. Oncol. 10, 1–13 (2020).

    Article  Google Scholar 

  31. 31.

    Wangsa, D., Quintanilla, I., Torabi, K., Vila‐Casadesús, M., Ercilla, A., Klus, G. et al. Near‐tetraploid cancer cells show chromosome instability triggered by replication stress and exhibit enhanced invasiveness. FASEB J. 32, 3502–3517 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Roschke, A. V., Glebov, O. K., Lababidi, S., Gehlhaus, K. S., Weinstein, J. N. & Kirsch, I. R. Chromosomal instability is associated with higher expression of genes implicated in epithelial-mesenchymal transition, cancer invasiveness, and metastasis and with lower expression of genes involved in cell cycle checkpoints, DNA repair, and chromatin maintenance. Neoplasia 10, 1222–1230 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Vasudevan, A., Baruah, P. S., Smith, J. C., Wang, Z., Sayles, N. M., Andrews, P. et al. Single-chromosomal gains can function as metastasis suppressors and promoters in colon cancer. Dev. Cell 52, 413–428 (2020).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Rutledge, S. D., Douglas, T. A., Nicholson, J. M., Vila-Casadesús, M., Kantzler, C. L., Wangsa, D. et al. Selective advantage of trisomic human cells cultured in non-standard conditions. Sci. Rep. 6, 1–12 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Tuna, M., Amos, C. I. & Mills, G. B. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 10, 2095–2111 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Barnes, D. J., Schultheis, B., Adedeji, S. & Melo, J. V. Dose-dependent effects of Bcr-Abl in cell line models of different stages of chronic myeloid leukemia. Oncogene 24, 6432–6440 (2005).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Salgia, R., Li, J. L., Ewaniuk, D. S., Pear, W., Pisick, E., Burky, S. A. et al. BCR/ABL induces multiple abnormalities of cytoskeletal function. J. Clin. Investig. 100, 46–57 (1997).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Kron, K. J., Murison, A., Zhou, S., Huang, V., Yamaguchi, T. N., Shiah, Y. J. et al. TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat. Genet. 49, 1336–1345 (2017).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Sizemore, G. M., Pitarresi, J. R., Balakrishnan, S. & Ostrowski, M. C. The ETS family of oncogenic transcription factors in solid tumours. Nat. Rev. Cancer 17, 337–351 (2017).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Tomlins, S. A., Laxman, B., Varambally, S., Cao, X., Yu, J., Helgeson, B. E. et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Kim, J., Wu, L., Zhao, J. C., Jin, H. J. & Yu, J. TMPRSS2-ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c. Oncogene 33, 5183–5192 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Ratz, L., Laible, M., Kacprzyk, L. A., Wittig-Blaich, S. M., Tolstov, Y., Duensing, S. et al. TMPRSS2:ERG gene fusion variants induce TGF-β signaling and epithelial to mesenchymal transition in human prostate cancer cells. Oncotarget 8, 25115–25130 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Stavropoulou, V., Kaspar, S., Brault, L., Sanders, M. A., Juge, S., Morettini, S. et al. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell 30, 43–58 (2016).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Lei, J. T., Shao, J., Zhang, J., Iglesia, M., Chan, D. W., Cao, J. et al. Functional annotation of ESR1 gene fusions in estrogen receptor-positive breast cancer. Cell Rep. 24, 1434–1444 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Johnson, E., Seachrist, D. D., DeLeon-Rodriguez, C. M., Lozada, K. L., Miedler, J., Abdul-Karim, F. W. et al. HER2/ErbB2-induced breast cancer cell migration and invasion require p120 catenin activation of Rac1 and Cdc42. J. Biol. Chem. 285, 29491–29501 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Yokotsuka, M., Iwaya, K., Saito, T., Pandiella, A., Tsuboi, R., Kohno, N. et al. Overexpression of HER2 signaling to WAVE2–Arp2/3 complex activates MMP-independent migration in breast cancer. Breast Cancer Res. Treat. 126, 311–318 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Wang, K., Ji, W., Yu, Y., Li, Z., Niu, X., Xia, W. et al. FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial–mesenchymal transition, and metastasis in FGFR1-amplified lung cancer. Oncogene 37, 5340–5354 (2018).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Talasila, K. M., Soentgerath, A., Euskirchen, P., Rosland, G. V., Wang, J., Huszthy, P. C. et al. EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 125, 683–698 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kelley, L. C., Shahab, S. & Weed, S. A. Actin cytoskeletal mediators of motility and invasion amplified and overexpressed in head and neck cancer. Clin. Exp. Metastasis 25, 289–304 (2008).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Rothschild, B. L., Shim, A. H., Ammer, A. G., Kelley, L. C., Irby, K. B., Head, J. A. et al. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res. 66, 8017–8025 (2006).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Tan, K. D., Zhu, Y., Tan, H. K., Rajasegaran, V., Aggarwal, A., Wu, J. et al. Amplification and overexpression of PPFIA1, a putative 11q13 invasion suppressor gene, in head and neck squamous cell carcinoma. Genes Chromosomes Cancer 47, 353–362 (2008).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Bhosale, P. G., Pandey, M., Cristea, S., Shah, M., Patil, A., Beerenwinkel, N. et al. Recurring amplification at 11q22.1-q22.2 locus plays an important role in lymph node metastasis and radioresistance in OSCC. Sci. Rep. 7, 1–14 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Xu, T., Yan, S., Jiang, L., Yu, S., Lei, T., Yang, D. et al. Gene amplification-driven long noncoding RNA SNHG17 regulates cell proliferation and migration in human non-small-cell lung cancer. Mol. Ther. Nucleic Acids 17, 405–413 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Chen, S., Chen, Y., Qian, Q., Wang, X., Chang, Y., Ju, S. et al. Gene amplification derived a cancer‐testis long noncoding RNA PCAT6 regulates cell proliferation and migration in hepatocellular carcinoma. Cancer Med. 8, 3017–3025 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Ding, J., Huang, S., Wu, S., Zhao, Y., Liang, L., Yan, M. et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat. Cell Biol. 12, 390–399 (2010).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Segura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S. et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc. Natl Acad. Sci. USA 106, 1814–1819 (2009).

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Nguyen, D. X. & Massagué, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8, 341–352 (2007).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Xu, J., Shumate, C., Qin, Y., Reddy, V., Burnam, Y., Lopez, V. et al. A novel Ubc9-dependent pathway regulates SIRT1- ER-α Axis and BRCA1- associated TNBC lung metastasis. Integr. Mol. Med. 4, 139–148 (2017).

    Article  Google Scholar 

  59. 59.

    Xu, J., Footman, A., Qin, Y., Aysola, K., Black, S., Reddy, V. et al. BRCA1 mutation leads to deregulated Ubc9 levels which triggers proliferation and migration of patient-derived high grade serous ovarian cancer and triple negative breast cancer cells. Int. J. Chronic Dis. Ther. 2, 31–38 (2016).

  60. 60.

    Nie, Z., Gao, W., Zhang, Y., Hou, Y., Liu, J., Li, Z. et al. STAG2 loss-of-function mutation induces PD-L1 expression in U2OS cells. Ann. Transl. Med. 7, 127–127 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, 1–17 (2010).

    Article  CAS  Google Scholar 

  62. 62.

    Chang, C.-J., Chao, C.-H., Xia, W., Yang, J.-Y., Xiong, Y., Li, C.-W. et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol. 13, 317–323 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Yang-Hartwich, Y., Tedja, R., Roberts, C. M., Goodner-Bingham, J., Cardenas, C., Gurea, M. et al. p53–Pirh2 Complex Promotes Twist1 Degradation and Inhibits EMT. Mol. Cancer Res. 17, 153–164 (2019).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Wang, Z., Jiang, Y., Guan, D., Li, J., Yin, H., Pan, Y. et al. Critical roles of p53 in epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma cells. PLoS ONE 8, e72846 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Gadea, G., de Toledo, M., Anguille, C. & Roux, P. Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J. Cell Biol. 178, 23–30 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Guo, F. & Zheng, Y. Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion. Oncogene 23, 5577–5585 (2004).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Doyle, B., Morton, J. P., Delaney, D. W., Ridgway, R. A., Wilkins, J. A. & Sansom, O. J. p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma. J. Pathol. 222, 129–137 (2010).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Brady, C. A. & Attardi, L. D. P53 at a glance. J. Cell Sci. 123, 2527–2532 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Stein, Y., Rotter, V. & Aloni-Grinstein, R. Gain-of-function mutant p53: all the roads lead to tumorigenesis. Int. J. Mol. Sci. 20, 1–16 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Strano, S., Dell’Orso, S., Di Agostino, S., Fontemaggi, G., Sacchi, A. & Blandino, G. Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212–2219 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B. et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137, 87–98 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Muller, P. A. J., Trinidad, A. G., Timpson, P., Morton, J. P., Zanivan, S., Van Den Berghe, P. V. E. et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene 32, 1252–1265 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Muller, P. A. J., Caswell, P. T., Doyle, B., Iwanicki, M. P., Tan, E. H., Karim, S. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Muller, P. A. J., Trinidad, A. G., Caswell, P. T., Norman, J. C. & Vousden, K. H. Mutant p53 regulates dicer through p63-dependent and -independent mechanisms to promote an invasive phenotype. J. Biol. Chem. 289, 122–132 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Lakoduk, A. M., Roudot, P., Mettlen, M., Grossman, H. M., Schmid, S. L. & Chen, P. H. Mutant p53 amplifies a dynamin-1/APPL1 endosome feedback loop that regulates recycling and migration. J. Cell Biol. 218, 1928–1942 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Neilsen, P. M., Noll, J. E., Mattiske, S., Bracken, C. P., Gregory, P. A., Schulz, R. B. et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 32, 2992–3000 (2013).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Subramanian, M., Francis, P., Bilke, S., Li, X. L., Hara, T., Lu, X. et al. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene 34, 1094–1104 (2015).

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Stindt, M. H., Muller, P. A. J., Ludwig, R. L., Kehrloesser, S., Dötsch, V. & Vousden, K. H. Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene 34, 4300–4310 (2015).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Wei, S., Wang, H., Lu, C., Malmut, S., Zhang, J., Ren, S. et al. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. J. Biol. Chem. 289, 8947–8959 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Kogan-Sakin, I., Tabach, Y., Buganim, Y., Molchadsky, A., Solomon, H., Madar, S. et al. Mutant p53 R175H upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ. 18, 271–281 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Wang, S. P., Wang, W. L., Chang, Y. L., Wu, C. T., Chao, Y. C., Kao, S. H. et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat. Cell Biol. 11, 694–704 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Dong, P., Karaayvaz, M., Jia, N., Kaneuchi, M., Hamada, J., Watari, H. et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32, 3286–3295 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Shakya, R., Tarulli, G. A., Sheng, L., Lokman, N. A., Ricciardelli, C., Pishas, K. I. et al. Mutant p53 upregulates alpha-1 antitrypsin expression and promotes invasion in lung cancer. Oncogene 36, 4469–4480 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Schulz-Heddergott, R., Stark, N., Edmunds, S. J., Li, J., Conradi, L.-C., Bohnenberger, H. et al. Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits Stat3-mediated tumor growth and invasion. Cancer Cell 34, 298–314 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Jiang, Z., Deng, T., Jones, R., Li, H., Herschkowitz, J. I., Liu, J. C. et al. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J. Clin. Investig. 120, 3296–3309 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Junk, D. J., Vrba, L., Watts, G. S., Oshiro, M. M., Martinez, J. D. & Futscher, B. W. Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia 10, 450–461 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Olszewski, M. B., Pruszko, M., Snaar-Jagalska, E., Zylicz, A. & Zylicz, M. Diverse and cancer type-specific roles of the p53 R248Q gain-of-function mutation in cancer migration and invasiveness. Int. J. Oncol. 54, 1168–1182 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Hung, M. S., Chen, I. C., Lung, J. H., Lin, P. Y., Li, Y. C. & Tsai, Y. H. Epidermal growth factor receptor mutation enhances expression of cadherin-5 in lung cancer cells. PLoS ONE 11, 1–15 (2016).

    Google Scholar 

  89. 89.

    Tsai, M. F., Chang, T. H., Wu, S. G., Yang, H. Y., Hsu, Y. C., Yang, P. C. et al. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci. Rep. 5, 1–14 (2015).

    CAS  Google Scholar 

  90. 90.

    Erdem-Eraslan, L., Gao, Y., Kloosterhof, N. K., Atlasi, Y., Demmers, J., Sacchetti, A. et al. Mutation specific functions of EGFR result in a mutation-specific downstream pathway activation. Eur. J. Cancer 51, 893–903 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Keller, S. & Schmidt, M. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: combination therapies for an effective treatment. Int. J. Mol. Sci. 18, 1–19 (2017).

    Article  CAS  Google Scholar 

  92. 92.

    Sangar, V., Funk, C. C., Kusebauch, U., Campbell, D. S., Moritz, R. L. & Price, N. D. Quantitative proteomic analysis reveals effects of epidermal growth factor receptor (EGFR) on invasion-promoting proteins secreted by glioblastoma cells. Mol. Cell. Proteom. 13, 2618–2631 (2014).

    CAS  Article  Google Scholar 

  93. 93.

    Liu, M., Yang, Y., Wang, C., Sun, L., Mei, C., Yao, W. et al. The effect of epidermal growth factor receptor variant III on glioma cell migration by stimulating ERK phosphorylation through the focal adhesion kinase signaling pathway. Arch. Biochem. Biophys. 502, 89–95 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Ryan, M. R., Sohl, C. D., Luo, B. & Anderson, K. S. The FGFR1 V561M gatekeeper mutation drives AZD4547 resistance through STAT3 activation and EMT. Mol. Cancer Res. 17, 532–543 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Stehbens, S. J., Ju, R. J., Adams, M. N., Perry, S. R., Haass, N. K., Bryant, D. M. et al. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J. Cell Sci. 131, 1–16 (2018).

    Article  CAS  Google Scholar 

  96. 96.

    Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287–1292 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Demin, D. E., Afanasyeva, M. A., Uvarova, A. N., Prokofjeva, M. M., Gorbachova, A. M., Ustiugova, A. S. et al. Constitutive expression of NRAS with Q61R driver mutation activates processes of epithelial–mesenchymal transition and leads to substantial transcriptome change of Nthy-ori 3–1 thyroid epithelial cells. Biochem. (Mosc.) 84, 416–425 (2019).

    CAS  Article  Google Scholar 

  98. 98.

    Geyer, F. C., Li, A., Papanastasiou, A. D., Smith, A., Selenica, P., Burke, K. A. et al. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas. Nat. Commun. 9, 1–16 (2018).

    Article  Google Scholar 

  99. 99.

    Boutin, A. T., Liao, W., Wang, M., Hwang, S. S., Karpinets, T. V., Cheung, H. et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31, 370–382 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Padavano, J., Henkhaus, R. S., Chen, H., Skovan, B. A., Cui, H. & Ignatenko, N. A. Mutant K-RAS promotes invasion and metastasis in pancreatic cancer through GTPase signaling pathways. Cancer Growth Metastasis 8, 95–113 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Xu, W., Wang, Z., Zhang, W., Qian, K., Li, H., Kong, D. et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin signaling pathway. Cancer Lett. 356, 613–627 (2015).

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Makrodouli, E., Oikonomou, E., Koc, M., Andera, L., Sasazuki, T., Shirasawa, S. et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study. Mol. Cancer 10, 1–21 (2011).

    Article  CAS  Google Scholar 

  103. 103.

    Lee, R. M., Vitolo, M. I., Losert, W. & Martin, S. S. Distinct roles of tumor-associated mutations in collective cell migration. Preprint at https://doi.org/10.1101/2020.06.04.135178 (2020).

  104. 104.

    Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Lu, H., Liu, S., Zhang, G., Kwong, L. N., Zhu, Y., Miller, J. P. et al. Oncogenic BRAF-mediated melanoma cell invasion. Cell Rep. 15, 2012–2024 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Palona, I., Namba, H., Mitsutake, N., Starenki, D., Podtcheko, A., Sedliarou, I. et al. BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor κB activation. Endocrinology 147, 5699–5707 (2006).

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Zhang, T., Shen, X., Liu, R., Zhu, G. & Bishop, J. Epigenetically upregulated WIPF1 plays a major role in BRAF V600E-promoted papillary thyroid cancer aggressiveness. Oncotarget 8, 900–914 (2017).

    PubMed  Article  Google Scholar 

  108. 108.

    Yan, R., Yang, T., Zhai, H., Zhou, Z., Gao, L. & Li, Y. MicroRNA-150-5p affects cell proliferation, apoptosis, and EMT by regulation of the BRAFV600E mutation in papillary thyroid cancer cells. J. Cell. Biochem. 119, 8763–8772 (2018).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Brummer, T., Martin, P., Herzog, S., Misawa, Y., Daly, R. J. & Reth, M. Functional analysis of the regulatory requirements of B-Raf and the B-RafV600E oncoprotein. Oncogene 25, 6262–6276 (2006).

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Alsaran, H., Elkhadragy, L., Shakya, A. & Long, W. L290P/V mutations increase ERK3’s cytoplasmic localization and migration/invasion-promoting capability in cancer cells. Sci. Rep. 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  111. 111.

    Ahn, Y.-H., Yang, Y., Gibbons, D. L., Creighton, C. J., Yang, F., Wistuba, I. I. et al. Map2k4 functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell invasion by decreasing peroxisome proliferator-activated receptor 2 expression. Mol. Cell. Biol. 31, 4270–4285 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Samuels, Y. & Waldman, T. Oncogenic mutations of PIK3CA in human cancers. Curr. Top. Microbiol. Immunol. 347, 21–41 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Samuels, Y., Diaz, L. A., Schmidt-Kittler, O., Cummins, J. M., DeLong, L., Cheong, I. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Kim, J. W., Lee, H. S., Nam, K. H., Ahn, S., Kim, J. W., Ahn, S. H. et al. PIK3CA mutations are associated with increased tumor aggressiveness and Akt activation in gastric cancer. Oncotarget 8, 90948–90958 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Arjumand, W., Merry, C. D., Wang, C., Saba, E., McIntyre, J. B., Fang, S. et al. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells. Oncotarget 7, 82424–82439 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Pang, H., Flinn, R., Patsialou, A., Wyckoff, J., Roussos, E. T., Wu, H. et al. Differential enhancement of breast cancer cell motility and metastasis by helical and kinase domain mutations of class IA phosphoinositide 3-kinase. Cancer Res. 69, 8868–8876 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Murugan, A. K., Thi Hong, N., Fukui, Y., Munirajan, A. K. & Tsuchida, N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int. J. Oncol. 32, 101–111 (2008).

    CAS  PubMed  Google Scholar 

  118. 118.

    Kidacki, M., Lehman, H. L., Green, M. V., Warrick, J. I. & Stairs, D. B. p120-catenin downregulation and PIK3CA mutations cooperate to induce invasion through MMP1 in HNSCC. Mol. Cancer Res. 15, 1398–1409 (2017).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Álvarez-Garcia, V., Tawil, Y., Wise, H. M. & Leslie, N. R. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol. 59, 66–79 (2019).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Perumal, E., So Youn, K., Sun, S., Seung-Hyun, J., Suji, M., Jieying, L. et al. PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells. Lung Cancer 130, 25–34 (2019).

    PubMed  Article  Google Scholar 

  121. 121.

    Mulholland, D. J., Kobayashi, N., Ruscetti, M., Zhi, A., Tran, L. M., Huang, J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Costa, H. A., Leitner, M. G., Sos, M. L., Mavrantoni, A., Rychkova, A., Johnson, J. R. et al. Discovery and functional characterization of a neomorphic PTEN mutation. Proc. Natl Acad. Sci. USA 112, 13976–13981 (2015).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Mundi, P. S., Sachdev, J., McCourt, C. & Kalinsky, K. AKT in cancer: new molecular insights and advances in drug development. Br. J. Clin. Pharmacol. 110, 943–956 (2016).

    Article  CAS  Google Scholar 

  124. 124.

    Marco, C. De, Malanga, D., Rinaldo, N., Vita, F. De, Scrima, M., Lovisa, S. et al. Mutant AKT1-E17K is oncogenic in lung epithelial cells. Oncotarget 6, 39634–39650 (2015).

  125. 125.

    Salhia, B., Cott, C., Van, Tegeler, T., Polpitiya, A., Duquette, R. A., Gale, M. et al. Differential effects of AKT1 (p.E17K) expression on human mammary luminal epithelial and myoepithelial cells. Hum. Mutat. 33, 1216–1227 (2012).

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Murugan, A. K., Liu, R. & Xing, M. Identification and characterization of two novel oncogenic mTOR mutations. Oncogene 38, 5211–5226 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Di Fiore, R., D’Anneo, A., Tesoriere, G. & Vento, R. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J. Cell. Physiol. 228, 1676–1687 (2013).

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Thangavel, C., Boopathi, E., Liu, Y., Haber, A., Ertel, A., Bhardwaj, A. et al. RB loss promotes prostate cancer metastasis. Cancer Res. 77, 982–995 (2017).

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Knudsen, E. S., McClendon, A. K., Franco, J., Ertel, A., Fortina, P. & Witkiewicz, A. K. RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer. Cell Cycle 14, 109–122 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Kim, K.-J., Godarova, A., Seedle, K., Kim, M.-H., Ince, T. A., Wells, S. I. et al. Rb suppresses collective invasion, circulation and metastasis of breast cancer cells in CD44-dependent manner. PLoS ONE 8, e80590 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  131. 131.

    Grande-García, A., Echarri, A., de Rooij, J., Alderson, N. B., Waterman-Storer, C. M., Valdivielso, J. M. et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol. 177, 683–694 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. 132.

    Bonuccelli, G., Casimiro, M. C., Sotgia, F., Wang, C., Liu, M., Katiyar, S. et al. Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. Am. J. Pathol. 174, 1650–1662 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Hu, Z., Wang, X., Fang, H., Liu, Y., Chen, D., Zhang, Q. et al. A tyrosine phosphatase SHP2 gain-of-function mutation enhances malignancy of breast carcinoma. Oncotarget 7, 5664–5676 (2016).

    PubMed  Article  Google Scholar 

  134. 134.

    Li, C., Egloff, A. M., Sen, M., Grandis, J. R. & Johnson, D. E. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol. Oncol. 8, 1220–1230 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Keller, N., Ozmadenci, D., Ichim, G. & Stupack, D. Caspase-8 function, and phosphorylation, in cell migration. Semin. Cell Dev. Biol. 82, 105–117 (2018).

    CAS  PubMed  Article  Google Scholar 

  136. 136.

    Svensmark, J. H. & Brakebusch, C. Rho GTPases in cancer: friend or foe? Oncogene 38, 7447–7456 (2019).

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    De, P., Aske, J. C. & Dey, N. RAC1 takes the lead in solid tumors. Cells 8, 382 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  138. 138.

    Davis, M. J., Ha, B. H., Holman, E. C., Halaban, R., Schlessinger, J. & Boggon, T. J. RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc. Natl Acad. Sci. USA 110, 912–917 (2013).

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Krauthammer, M., Kong, Y., Ha, B. H., Evans, P., Bacchiocchi, A., McCusker, J. P. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Tomino, T., Tajiri, H., Tatsuguchi, T., Shirai, T., Oisaki, K., Matsunaga, S. et al. DOCK1 inhibition suppresses cancer cell invasion and macropinocytosis induced by self-activating Rac1P29S mutation. Biochem. Biophys. Res. Commun. 497, 298–304 (2018).

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Revach, O. Y., Winograd-Katz, S. E., Samuels, Y. & Geiger, B. The involvement of mutant Rac1 in the formation of invadopodia in cultured melanoma cells. Exp. Cell Res. 343, 82–88 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Porter, A. P., Papaioannou, A. & Malliri, A. Deregulation of Rho GTPases in cancer. Small GTPases 7, 123–138 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Nishizawa, T., Nakano, K., Harada, A., Kakiuchi, M., Funahashi, S. I., Suzuki, M. et al. DGC-specific RHOA mutations maintained cancer cell survival and promoted cell migration via ROCK inactivation. Oncotarget 9, 23198–23207 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Nishizawa, T., Fujii, E., Komura, D., Kuroiwa, Y., Ishimaru, C., Monnai, M. et al. In vivo effects of mutant RHOA on tumor formation in an orthotopic inoculation model. Oncol. Rep. 42, 1745–1754 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Robinson, D. R., Wu, Y., Lonigro, R. J., Vats, P., Cobain, E., Everett, J. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Yang, M. H., Yen, C. H., Chen, Y. F., Fang, C. C., Li, C. H., Lee, K. J. et al. Somatic mutations of PREX2 gene in patients with hepatocellular carcinoma. Sci. Rep. 9, 1–8 (2019).

    Article  CAS  Google Scholar 

  148. 148.

    Qutob, N., Masuho, I., Alon, M., Emmanuel, R., Cohen, I., Di Pizio, A. et al. RGS7 is recurrently mutated in melanoma and promotes migration and invasion of human cancer cells. Sci. Rep. 8, 1–10 (2018).

    CAS  Article  Google Scholar 

  149. 149.

    Binamé, F., Bidaud-Meynard, A., Magnan, L., Piquet, L., Montibus, B., Chabadel, A. et al. Cancer-associated mutations in the protrusion-targeting region of p190RhoGAP impact tumor cell migration. J. Cell Biol. 214, 859–873 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150.

    Nath, D., Li, X., Mondragon, C., Post, D., Chen, M., White, J. R. et al. Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling. Cell Commun. Signal. 17, 1–19 (2019).

    CAS  Article  Google Scholar 

  151. 151.

    Molinie, N. & Gautreau, A. The Arp2/3 regulatory system and its deregulation in cancer. Physiol. Rev. 98, 215–238 (2018).

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Whale, A. D., Dart, A., Holt, M., Jones, G. E. & Wells, C. M. PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Oncogene 32, 2114–2120 (2013).

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Lochhead, P. A., Wickman, G., Mezna, M. & Olson, M. F. Activating ROCK1 somatic mutations in human cancer. Oncogene 29, 2591–2598 (2010).

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Prudnikova, T. Y., Rawat, S. J. & Chernoff, J. Molecular pathways: targeting the kinase effectors of RHO-family GTPases. Clin. Cancer Res. 21, 24–29 (2015).

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Friedl, P. & Alexander, S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Cooper, J. & Giancotti, F. G. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35, 347–367 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Ferreira, M., Fujiwara, H., Morita, K. & Watt, F. M. An activating beta1 integrin mutation increases the conversion of benign to malignant skin tumors. Cancer Res. 69, 1334–1342 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Evans, R. D., Perkins, V. C., Henry, A., Stephens, P. E., Robinson, M. K. & Watt, F. M. A tumor-associated β1 integrin mutation that abrogates epithelial differentiation control. J. Cell Biol. 160, 589–596 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    McGrath, J. L. Cell spreading: the power to simplify. Curr. Biol. 17, R357–R358 (2007).

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Ren, B., Yu, Y. P., Tseng, G. C., Wu, C., Chen, K., Rao, U. N. et al. Analysis of integrin α7 mutations in prostate cancer, liver cancer, glioblastoma multiforme, and leiomyosarcoma. JNCI J. Natl Cancer Inst. 99, 868–880 (2007).

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Fanjul-Fernández, M., Quesada, V., Cabanillas, R., Cadiñanos, J., Fontanil, T., Obaya, Á. et al. Cell-cell adhesion genes CTNNA2 and CTNNA3 are tumour suppressors frequently mutated in laryngeal carcinomas. Nat. Commun. 4, 2531 (2013).

    PubMed  Article  CAS  Google Scholar 

  162. 162.

    Jagadeeswaran, R., Surawska, H., Krishnaswamy, S., Janamanchi, V., Mackinnon, A. C., Seiwert, T. Y. et al. Paxillin is a target for somatic mutations in lung cancer: implications for cell growth and invasion. Cancer Res. 68, 132–142 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  163. 163.

    Kawada, I., Hasina, R., Lennon, F. E., Bindokas, V. P., Usatyuk, P., Tan, Y. H. C. et al. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics: relevance to lung cancer. Cancer Biol. Ther. 14, 679–691 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Yoon, S., Choi, J. H., Kim, S. J., Lee, E. J., Shah, M., Choi, S. et al. EPHB6 mutation induces cell adhesion-mediated paclitaxel resistance via EPHA2 and CDH11 expression. Exp. Mol. Med. 51, 1–12 (2019).

    PubMed  Google Scholar 

  165. 165.

    Fang, X. Q., Liu, X. F., Yao, L., Chen, C. Q., Gu, Z. D., Ni, P. H. et al. Somatic mutational analysis of FAK in breast cancer: a novel gain-of-function mutation due to deletion of exon 33. Biochem. Biophys. Res. Commun. 443, 363–369 (2014).

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S. & Weinberg, R. A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654 (2008).

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Van Horssen, R., Hollestelle, A., Rens, J. A. P. R., Eggermont, A. M. M., Schutte, M. & Hagen, T. L. M. T. E-cadherin promotor methylation and mutation are inversely related to motility capacity of breast cancer cells. Breast Cancer Res. Treat. 136, 365–377 (2012).

    PubMed  Article  CAS  Google Scholar 

  168. 168.

    Lombaerts, M., van Wezel, T., Philippo, K., Dierssen, J. W. F., Zimmerman, R. M. E., Oosting, J. et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br. J. Cancer 94, 661–671 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. 169.

    Palavalli, L. H., Prickett, T. D., Wunderlich, J. R., Wei, X., Burrell, A. S., Porter-Gill, P. et al. Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat. Genet. 41, 518–520 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Åström, P., Juurikka, K., Hadler-Olsen, E. S., Svineng, G., Cervigne, N. K., Coletta, R. D. et al. The interplay of matrix metalloproteinase-8, transforming growth factor-β1 and vascular endothelial growth factor-C cooperatively contributes to the aggressiveness of oral tongue squamous cell carcinoma. Br. J. Cancer 117, 1007–1016 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. 171.

    Gutiérrez-Fernández, A., Fueyo, A., Folgueras, A. R., Garabaya, C., Pennington, C. J., Pilgrim, S. et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 68, 2755–2763 (2008).

    PubMed  Article  CAS  Google Scholar 

  172. 172.

    Juurikka, K., Butler, G. S., Salo, T., Nyberg, P. & Åström, P. The role of MMP8 in cancer: a systematic review. Int. J. Mol. Sci. 20, 4506 (2019).

  173. 173.

    Wei, X., Prickett, T. D., Viloria, C. G., Molinolo, A., Lin, J. C., Cardenas-Navia, I. et al. Mutational and functional analysis reveals ADAMTS18 metalloproteinase as a novel driver in melanoma. Mol. Cancer Res. 8, 1513–1525 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Yasukawa, M., Liu, Y., Hu, L., Cogdell, D., Gharpure, K. M., Pradeep, S. et al. ADAMTS16 mutations sensitize ovarian cancer cells to platinumbased chemotherapy. Oncotarget 8, 88410–88420 (2017).

    PubMed  Article  Google Scholar 

  175. 175.

    Dyczynska, E., Syta, E., Sun, D. & Zolkiewska, A. Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int. J. Cancer 122, 2634–2640 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  176. 176.

    Eatemadi, A., Aiyelabegan, H. T., Negahdari, B., Mazlomi, M. A., Daraee, H., Daraee, N. et al. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother. 86, 221–231 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178.

    Zhao, M., Kong, L., Liu, Y. & Qu, H. DbEMT: an epithelial-mesenchymal transition associated gene resource. Sci. Rep. 5, 1–14 (2015).

    Google Scholar 

  179. 179.

    Lee, J.-H., Zhao, X.-M., Yoon, I., Lee, J. Y., Kwon, N. H., Wang, Y.-Y. et al. Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov. 2, 16025 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Jin, Y., Zhao, X., Zhang, Q., Zhang, Y., Fu, X., Hu, X. et al. Cancer-associated mutation abolishes the impact of TRIM21 on the invasion of breast cancer cells. Int. J. Biol. Macromol. 142, 782–789 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181.

    Park, I., Son, H. K., Che, Z. M. & Kim, J. A novel gain-of-function mutation of TGF-β receptor II promotes cancer progression via delayed receptor internalization in oral squamous cell carcinoma. Cancer Lett. 315, 161–169 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Park, S., Yang, K.-M., Park, Y., Hong, E., Hong, C. P., Park, J. et al. Identification of epithelial-mesenchymal transition-related target genes induced by the mutation of Smad3 linker phosphorylation. J. Cancer Prev. 23, 1–9 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Wang, Z., Li, Y., Zhan, S., Zhang, L., Zhang, S., Tang, Q. et al. SMAD4 Y353C promotes the progression of PDAC. BMC Cancer 19, 1–12 (2019).

    Article  Google Scholar 

  184. 184.

    Gao, C., Wang, Y., Broaddus, R., Sun, L., Xue, F. & Zhang, W. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget 9, 5492–5508 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  185. 185.

    Kawasaki, Y., Sato, R. & Akiyama, T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat. Cell Biol. 5, 211–215 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  186. 186.

    Zheng, Y., Wang, Z., Ding, X., Zhang, W., Li, G., Liu, L. et al. A novel Notch1 missense mutation (C1133Y) in the Abruptex domain exhibits enhanced proliferation and invasion in oral squamous cell carcinoma. Cancer Cell Int. 18, 1–15 (2018).

    Article  CAS  Google Scholar 

  187. 187.

    Yuan, Y., Wang, W., Li, H., Yu, Y., Tao, J., Huang, S. et al. Nonsense and missense mutation of mitochondrial ND6 gene promotes cell migration and invasion in human lung adenocarcinoma. BMC Cancer 15, 1–10 (2015).

    Article  CAS  Google Scholar 

  188. 188.

    Prickett, T. D., Wei, X., Cardenas-Navia, I., Teer, J. K., Lin, J. C., Walia, V. et al. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat. Genet. 43, 1119–1126 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. 189.

    Gómez-Cuadrado, L., Tracey, N., Ma, R., Qian, B. & Brunton, V. G. Mouse models of metastasis: progress and prospects. Dis. Model. Mech. 10, 1061–1074 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  190. 190.

    Rampetsreiter, P., Casanova, E. & Eferl, R. Genetically modified mouse models of cancer invasion and metastasis. Drug Discov. Today Dis. Models 8, 67–74 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  192. 192.

    O’Rourke, K. P., Loizou, E., Livshits, G., Schatoff, E. M., Baslan, T., Manchado, E. et al. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577–582 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  193. 193.

    Fumagalli, A., Drost, J., Suijkerbuijk, S. J. E., van Boxtel, R., de Ligt, J., Offerhaus, G. J. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl Acad. Sci. USA 114, E2357–E2364 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. 194.

    Masui, K., Kato, Y., Sawada, T., Mischel, P. S. & Shibata, N. Molecular and genetic determinants of glioma cell invasion. Int. J. Mol. Sci. 18, 2609 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  195. 195.

    Staneva, R., El Marjou, F., Barbazan, J., Krndija, D., Richon, S., Clark, A. G. et al. Cancer cells in the tumor core exhibit spatially coordinated migration patterns. J. Cell Sci. 132, jcs220277 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196.

    Alieva, M., Leidgens, V., Riemenschneider, M. J., Klein, C. A., Hau, P. & van Rheenen, J. Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. Sci. Rep. 9, 2054 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  197. 197.

    Gerashchenko, T. S., Novikov, N. M., Krakhmal, N. V., Zolotaryova, S. Y., Zavyalova, M. V., Cherdyntseva, N. V. et al. Markers of cancer cell invasion: are they good enough? J. Clin. Med. 8, 1092 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  198. 198.

    Denisov, E. V., Skryabin, N. A., Gerashchenko, T. S., Tashireva, L. A., Wilhelm, J., Buldakov, M. A. et al. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness. Oncotarget 8, 61163–61180 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  199. 199.

    Gerashchenko, T. S., Zolotaryova, S. Y., Kiselev, A. M., Tashireva, L. A., Novikov, N. M., Krakhmal, N. V. et al. The activity of KIF14, Mieap, and EZR in a new type of the invasive component, torpedo-like structures, predetermines the metastatic potential of breast cancer. Cancers 12, 1909 (2020).

    PubMed Central  Article  Google Scholar 

  200. 200.

    Zavjalova, M. V., Perelmuter, V. M., Slonimskaya, E. M., Vtorushin, S. V., Garbukov, E. Y. & Gluschenko, S. A. Conjugation of lymphogenous metastatic spread and histologic pattern of infiltrative component of ductal breast cancer. Sib. J. Oncol. 1, 32–35 (2006).

    Google Scholar 

  201. 201.

    Zavyalova, M. V., Perelmuter, V. M., Vtorushin, S. V., Denisov, E. V., Litvyakov, N. V., Slonimskaya, E. M. et al. The presence of alveolar structures in invasive ductal NOS breast carcinoma is associated with lymph node metastasis. Diagn. Cytopathol. 41, 279–282 (2013).

    PubMed  Article  Google Scholar 

  202. 202.

    Gerashchenko, T. S., Zavyalova, M. V., Denisov, E. V., Krakhmal, N. V., Pautova, D. N., Litviakov, N. V. et al. Intratumoral morphological heterogeneity of breast cancer as an indicator of the metastatic potential and tumor chemosensitivity. Acta Nat. 9, 56–67 (2017).

    CAS  Article  Google Scholar 

  203. 203.

    Tashireva, L. A., Zavyalova, M. V., Savelieva, O. E., Gerashchenko, T. S., Kaigorodova, E. V., Denisov, E. V. et al. Single tumor cells with epithelial-like morphology are associated with breast cancer metastasis. Front. Oncol. 10, 1–12 (2020).

    Article  Google Scholar 

  204. 204.

    Ahmed, S. M., Thériault, B. L., Uppalapati, M., Chiu, C. W. N., Gallie, B. L., Sidhu, S. S. et al. KIF14 negatively regulates Rap 1 a-Radil signaling during breast cancer progression. J. Cell Biol. 199, 951–967 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  205. 205.

    Kamino, H., Nakamura, Y., Tsuneki, M., Sano, H., Miyamoto, Y., Kitamura, N. et al. Mieap-regulated mitochondrial quality control is frequently inactivated in human colorectal cancer. Oncogenesis 5, e181 (2016).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  206. 206.

    Hoskin, V., Szeto, A., Ghaffari, A., Greer, P. A., Côté, G. P. & Elliott, B. E. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion. Mol. Biol. Cell 26, 3464–3479 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  207. 207.

    Blandino, G. & Di Agostino, S. New therapeutic strategies to treat human cancers expressing mutant p53 proteins. J. Exp. Clin. Cancer Res. 37, 30 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  208. 208.

    Yamaoka, T., Ohba, M. & Ohmori, T. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int. J. Mol. Sci. 18, 2420 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  209. 209.

    Willis, O., Choucair, K., Alloghbi, A., Stanbery, L., Mowat, R., Charles Brunicardi, F. et al. PIK3CA gene aberrancy and role in targeted therapy of solid malignancies. Cancer Gene Ther. 27, 634–644 (2020).

    CAS  PubMed  Article  Google Scholar 

  210. 210.

    Rosel, D., Fernandes, M., Sanz-Moreno, V. & Brábek, J. Migrastatics: redirecting R&D in solid cancer towards metastasis? Trends Cancer 5, 755–756 (2019).

    CAS  PubMed  Article  Google Scholar 

  211. 211.

    Gandalovičová, A., Rosel, D., Fernandes, M., Veselý, P., Heneberg, P., Čermák, V. et al. Migrastatics—anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer 3, 391–406 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  212. 212.

    McClelland, S. E. Role of chromosomal instability in cancer progression. Endocr. Relat. Cancer 24, 23–31 (2017).

    Article  Google Scholar 

  213. 213.

    Thompson, S. L., Bakhoum, S. F. & Compton, D. A. Mechanisms of chromosomal instability. Curr. Biol. 20, 285–295 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Nadezhda Krakhmal for providing the microphotographs of different morphological structures of breast tumour cells and Ms. Ekaterina Khitrinskaya for the preparation of figures.

Author information

Affiliations

Authors

Contributions

N.M.N. and S.Y.Z. wrote the paper. A.M.G. and E.V.D. supervised, proofread and provided input on the paper.

Corresponding author

Correspondence to Evgeny V. Denisov.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Data availability

Not applicable.

Competing interests

The authors declare no competing interests.

Funding information

The study was funded by RFBR and CNRS (project #18-515-16002).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Novikov, N.M., Zolotaryova, S.Y., Gautreau, A.M. et al. Mutational drivers of cancer cell migration and invasion. Br J Cancer (2020). https://doi.org/10.1038/s41416-020-01149-0

Download citation

Search