Cellular and Molecular Biology

APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer



Most cancer cells employ the Warburg effect to support anabolic growth and tumorigenesis. Here, we discovered a key link between Warburg effect and aberrantly activated Wnt/β-catenin signalling, especially by pathologically significant APC loss, in CRC.


Proteomic analyses were performed to evaluate the global effects of KYA1797K, Wnt/β-catenin signalling inhibitor, on cellular proteins in CRC. The effects of APC-loss or Wnt ligand on the identified enzymes, PKM2 and LDHA, as well as Warburg effects were investigated. A linkage between activation of Wnt/β-catenin signalling and cancer metabolism was analysed in tumour of Apcmin/+ mice and CRC patients. The roles of PKM2 in cancer metabolism, which depends on Wnt/β-catenin signalling, were assessed in xenograft-tumours.


By proteomic analysis, PKM2 and LDHA were identified as key molecules regulated by Wnt/β-catenin signalling. APC-loss caused the increased expression of metabolic genes including PKM2 and LDHA, and increased glucose consumption and lactate secretion. Pathological significance of this linkage was indicated by increased expression of glycolytic genes with Wnt target genes in tumour of Apcmin/+ mice and CRC patients. Warburg effect and growth of xenografted tumours-induced by APC-mutated-CRC cells were suppressed by PKM2-depletion.


The β-catenin-PKM2 regulatory axis induced by APC loss activates the Warburg effect in CRC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Suppressed expression of metabolic enzymes by KYA1797K.
Fig. 2: Positive correlation of PKM2 and LDHA expression with Wnt/β-catenin signalling in CRCs.
Fig. 3: Regulation of PKM2 and LDHA expression and the Warburg effects by the Wnt/β-catenin signalling in CRC cells.
Fig. 4: Suppression of induced glycolytic enzymes by KYA1797K in Apcmin/+ mice.
Fig. 5: Regulation of PKM2 transcription by Wnt/β-catenin signalling via Tcf4 in CRC cells.
Fig. 6: Roles of PKM2 on the Wnt/β-catenin signalling-induced Warburg effect and tumorigenesis in CRC.


  1. 1.

    Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 113 (2017).

    Article  Google Scholar 

  3. 3.

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  Article  Google Scholar 

  4. 4.

    Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  Google Scholar 

  5. 5.

    Levine, A. J. & Puzio-Kuter, A. M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340–1344 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Mantovani, F., Collavin, L. & Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26, 199–212 (2019).

    Article  Google Scholar 

  8. 8.

    Oermann, E. K., Wu, J., Guan, K. L. & Xiong, Y. Alterations of metabolic genes and metabolites in cancer. Semin. Cell Dev. Biol. 23, 370–380 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016).

    Article  Google Scholar 

  10. 10.

    Luengo, A., Gui, D. Y. & Vander Heiden, M. G. Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161–1180 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Sun, C., Li, T., Song, X., Huang, L., Zang, Q., Xu, J. et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl Acad. Sci. USA 116, 52–57 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    Fuchs, S. Y., Ougolkov, A. V., Spiegelman, V. S. & Minamoto, T. Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle 4, 1522–1539 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    Schwartz, D. R., Wu, R., Kardia, S. L., Levin, A. M., Huang, C. C., Shedden, K. A. et al. Novel candidate targets of beta-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas. Cancer Res. 63, 2913–2922 (2003).

    CAS  PubMed  Google Scholar 

  16. 16.

    Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I. et al. Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. Cancer Res. 72, 3607–3617 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Melnik, S., Dvornikov, D., Muller-Decker, K., Depner, S., Stannek, P., Meister, M. et al. Cancer cell specific inhibition of Wnt/beta-catenin signaling by forced intracellular acidification. Cell Discov. 4, 37 (2018).

    Article  Google Scholar 

  18. 18.

    Mo, Y., Wang, Y., Zhang, L., Yang, L., Zhou, M., Li, X. et al. The role of Wnt signaling pathway in tumor metabolic reprogramming. J. Cancer 10, 3789–3797 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Cha, P. H., Cho, Y. H., Lee, S. K., Lee, J., Jeong, W. J., Moon, B. S. et al. Small-molecule binding of the axin RGS domain promotes beta-catenin and Ras degradation. Nat. Chem. Biol. 12, 593–600 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Shang, Y., He, J., Wang, Y., Feng, Q., Zhang, Y., Guo, J., et al. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene. 36, 4191–4200 (2017).

  21. 21.

    Xu, Q., Tu, J., Dou, C., Zhang, J., Yang, L., Liu, X. et al. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma. Mol. Cancer 16, 178 (2017).

    Article  Google Scholar 

  22. 22.

    Appel, R. D., Palagi, P. M., Walther, D., Vargas, J. R., Sanchez, J. C., Ravier, F. et al. Melanie II–a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface. Electrophoresis 18, 2724–2734 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    Kim, Y. S., Kim, M. S., Lee, S. H., Choi, B. C., Lim, J. M., Cha, K. Y. et al. Proteomic analysis of recurrent spontaneous abortion: Identification of an inadequately expressed set of proteins in human follicular fluid. Proteomics 6, 3445–3454 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    Lasota, J., Jasinski, M., Sarlomo-Rikala, M. & Miettinen, M. Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am. J. Pathol. 154, 53–60 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    Varghese, F., Bukhari, A. B., Malhotra, R. & De, A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One 9, e96801 (2014).

    Article  Google Scholar 

  26. 26.

    Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    CAS  Article  Google Scholar 

  27. 27.

    Lian, I., Kim, J., Okazawa, H., Zhao, J., Zhao, B., Yu, J. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Neville E Sanjana, Ophir Shalem, Feng Zhang, Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods 11 8, 783–784 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Wong, N., De Melo, J. & Tang, D. PKM2, a central point of regulation in cancer metabolism. Int. J. Cell Biol. 2013, 242513 (2013).

    Article  Google Scholar 

  30. 30.

    Hsu, M. C. & Hung, W. C. Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol. Cancer 17, 35 (2018).

    Article  Google Scholar 

  31. 31.

    Solaini, G., Sgarbi, G. & Baracca, A. Oxidative phosphorylation in cancer cells. Biochim. Biophys. Acta 1807, 534–542 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    Jilong, Y., Jian, W., Xiaoyan, Z., Xiaoqiu, L. & Xiongzeng, Z. Analysis of APC/beta-catenin genes mutations and Wnt signalling pathway in desmoid-type fibromatosis. Pathology 39, 319–325 (2007).

    Article  Google Scholar 

  33. 33.

    Taketo, M. M. Wnt signaling and gastrointestinal tumorigenesis in mouse models. Oncogene 25, 7522–7530 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275, 1784–1787 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W. et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480, 118–122 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    Chen, N. & Wang, J. Wnt/beta-Catenin signaling and obesity. Front Physiol. 9, 792 (2018).

    Article  Google Scholar 

  38. 38.

    El-Sahli, S., Xie, Y., Wang, L., Liu, S. Wnt signaling in cancer metabolism and immunity. Cancers (Basel). 11, 904 (2019).

  39. 39.

    Cheng, T. Y., Yang, Y. C., Wang, H. P., Tien, Y. W., Shun, C. T., Huang, H. Y. et al. Pyruvate kinase M2 promotes pancreatic ductal adenocarcinoma invasion and metastasis through phosphorylation and stabilization of PAK2 protein. Oncogene 37, 1730–1742 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Yang, W., Xia, Y., Cao, Y., Zheng, Y., Bu, W., Zhang, L. et al. EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis. Mol. Cell 48, 771–784 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Madan, B., Harmston, N., Nallan, G., Montoya, A., Faull, P., Petretto, E. et al. Temporal dynamics of Wnt-dependent transcriptome reveal an oncogenic Wnt/MYC/ribosome axis. J. Clin. Invest. 128, 5620–5633 (2018).

    Article  Google Scholar 

  42. 42.

    Campisi, J., Gray, H. E., Pardee, A. B., Dean, M. & Sonenshein, G. E. Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36, 241–247 (1984).

    CAS  Article  Google Scholar 

Download references

Author information




Conceptualisation: P-H.C. and K-Y.C.; methodology: P-H.C., J-H.H., D-K.K., E.K. and K.-S.K.; investigation: P-H.C., J-H.H. and D-K.K.; resources: P-H.C., J-H.H., D-K.K., E.K. and K-S.K.; writing—original draft: P-H.C., J-H.H. and K-Y.C.; funding acquisition: K-Y.C.; supervision, K-Y.C.

Corresponding author

Correspondence to Kang-Yell Choi.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were performed in accordance with Korean Food and Drug Administration guidelines. Protocols were reviewed and approved by the Institutional Review Board of Severance Hospital, Yonsei University College of Medicine.

Consent for publication

Not applicable.

Data availability

The datasets generated and/or analysed during the current study are available through Gene expression omnibus (GEO) or the corresponding references. Data of the microarray analysis: Gene Expression. Data of the microarray analysis on normal tissues and adenoma of small intestine tissues from WT and Apcmin/+ mice are shown in Fig. 2c and Fig. S3a: GSE422. Data of the microarray analysis on human normal colon and CRC samples are shown in Fig. S3b: GSE9348. Enrichment of glycolysis and glyconeogenesis in human tissues of normal mucosa and colorectal adenomas is shown in Fig. 2h (left panel): GSE8671. Enrichment of glycolysis and glyconeogenesis in CRC patients with and without APC mutations is shown in Fig. 2h (right panel): GSE26906. Gene expression of LDHA, AXIN2 and MYC in human CRC samples harbouring WT and MT APC in Fig. 3g: GSE63624.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korean Government (MSIP) (grant 2019R1A2C3002751 and 2016R1A5A1004694; to K-Y.C.). P-H.C., J-H.H. and D-K.K. were supported by a BK21 PLUS program.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cha, PH., Hwang, JH., Kwak, DK. et al. APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer (2020). https://doi.org/10.1038/s41416-020-01118-7

Download citation