Translational Therapeutics

Anti-VEGF therapy resistance in ovarian cancer is caused by GM-CSF-induced myeloid-derived suppressor cell recruitment

  • 84 Accesses

Abstract

Background

The mechanism of resistance development to anti-VEGF therapy in ovarian cancer is unclear. We focused on the changes in tumour immunity post anti-VEGF therapy.

Methods

The frequencies of immune cell populations and hypoxic conditions in the resistant murine tumours and clinical samples were examined. The expression profiles of both the proteins and genes in the resistant tumours were analysed. The impact of granulocyte–monocyte colony-stimulating factor (GM-CSF) expression on myeloid-derived suppressor cell (MDSC) function in the resistant tumours was evaluated.

Results

We found a marked increase and reduction in the number of Gr-1 + MDSCs and CD8 + lymphocytes in the resistant tumour, and the MDSCs preferentially infiltrated the hypoxic region. Protein array analysis showed upregulation of GM-CSF post anti-VEGF therapy. GM-CSF promoted migration and differentiation of MDSCs, which inhibited the CD8 + lymphocyte proliferation. Anti-GM-CSF therapy improved the anti-VEGF therapy efficacy, which reduced the infiltrating MDSCs and increased CD8 + lymphocytes. In immunohistochemical analysis of clinical samples, GM-CSF expression and MDSC infiltration was enhanced in the bevacizumab-resistant case.

Conclusions

The anti-VEGF therapy induces tumour hypoxia and GM-CSF expression, which recruits MDSCs and inhibits tumour immunity. Targeting the GM-CSF could help overcome the anti-VEGF therapy resistance in ovarian cancers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Anti-VEGF therapy induces MDSCs and decreases CD8+lymphocytes in tumour.
Fig. 2: Anti-VEGF therapy induces tumour hypoxia and attracts MDSCs.
Fig. 3: Expression of GM-CSF is upregulated in a-VEGF abs-treated tumour.
Fig. 4: Upregulation of GM-CSF expression under hypoxia is mediated via the NF-κB pathway.
Fig. 5: The impact of GM-CSF signals on MDSC migration and differentiation.
Fig. 6: A-GM-CSF abs enhances the efficacy of a-VEGF abs against HM-1 tumours via lymphocyte activation.

References

  1. 1.

    Ebell, M. H., Culp, M. B. & Radke, T. J. A systematic review of symptoms for the diagnosis of ovarian cancer. Am. J. Prev. Med. 30, 384–394 (2016).

  2. 2.

    Vaughan, S., Coward, J. I., Bast, R. C., Berchuck, A., Berek, J. S., Brenton, J. D. & Balkwill, F. R. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725 (2011).

  3. 3.

    Aghajanian, C., Goff, B., Nycum, L. R., Wang, Y. V., Husain, A. & Blank, S. V. Final overall survival and safety analysis of OCEANS, a phase 3 trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent ovarian cancer. Gynecologic Oncol. 139, 10–16 (2015).

  4. 4.

    Pignata, S., C. Cecere, S., Du Bois, A., Harter, P. & Heitz, F. Treatment of recurrent ovarian cancer. Ann. Oncol. 28, viii51–viii56 (2017).

  5. 5.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

  6. 6.

    Hamanishi, J., Mandai, M., Iwasaki, M., Okazaki, T., Tanaka, Y., Yamaguchi, K. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8 + T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA 104, 3360–3365 (2007).

  7. 7.

    Abiko, K., Mandai, M., Hamanishi, J., Yoshioka, Y., Matsumura, N., Baba, T. et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin. Cancer Res. 19, 1363–1374 (2013).

  8. 8.

    Hamanishi, J., Mandai, M., Ikeda, T., Minami, M., Kawaguchi, A., Murayama, T. et al. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol. 33, 4015–4022 (2015).

  9. 9.

    Horikawa, N., Abiko, K., Matsumura, N., Hamanishi, J., Baba, T., Yamaguchi, K. et al. Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin. Cancer Res. 23, 587–599 (2017).

  10. 10.

    Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

  11. 11.

    Steinberg, S. M., Shabaneh, T. B., Zhang, P., Martyanov, V., Li, Z., Malik, B. T. et al. Myeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitors. Cancer Res. 77, 1599–1610 (2017).

  12. 12.

    Talmadge, J. E. & Gabrilovich, D. I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 13, 739–752 (2013).

  13. 13.

    Olofsson, T. B. Growth regulation of hematopoietic cells. Overv. Acta Oncol. 30, 889–902 (1991).

  14. 14.

    Thorn, M., Guha, P., Cunetta, M., Espat, N. J., Miller, G., Junghans, R. P. et al. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther. 23, 188–198 (2016).

  15. 15.

    Kohanbash, G., McKaveney, K., Sakaki, M., Ueda, R., Mintz, A. H., Amankulor, N. et al. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 73, 6413–6423 (2013).

  16. 16.

    Hong, I. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp. Mol. Med. 48, e242–e248 (2016).

  17. 17.

    Becher, B., Tugues, S. & Greter, M. Review GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45, 963–973 (2016).

  18. 18.

    Janát-Amsbury, M. M., Yockman, J. W., Anderson, M. L., Kieback, D. G. & Kim, S. W. Comparison of ID8 MOSE and VEGF-modified ID8 cell lines in an immunocompetent animal model for human ovarian cancer. Anticancer Res. 26(4 B), 2785–2789 (2006).

  19. 19.

    Hamanishi, J., Mandai, M., Matsumura, N., Baba, T., Yamaguchi, K., Fujii, S. et al. Activated local immunity by CCL19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 28, 164–173 (2010).

  20. 20.

    Liang, W., Wu, X., Peale, F. V., Lee, C. V., Meng, Y. G., Gutierrez, J. et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J. Biol. Chem. 281, 951–961 (2006).

  21. 21.

    Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

  22. 22.

    Matsumura, N., Huang, Z., Baba, T., Lee, P. S., Barnett, J. C., Mori, S. et al. Yin yang 1 modulates taxane response in epithelial ovarian cancer. Mol. Cancer Res. 7, 210–220 (2009).

  23. 23.

    Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D. W., Dao, F. et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  24. 24.

    Masiero, M., Simões, F. C., Han, H. D., Snell, C., Peterkin, T., Bridges, E. et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell 24, 229–241 (2013).

  25. 25.

    Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

  26. 26.

    Kommoss, S., Winterhoff, B., Oberg, A. L., Konecny, G. E., Wang, C., Riska, S. M. et al. Bevacizumab may differentially improve ovarian cancer outcome in patients with proliferative and mesenchymal molecular subtypes. Clin. Cancer Res. 23, 3794–3801 (2017).

  27. 27.

    Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1 + myeloid cells. Nat. Biotechnol. 25, 911–920 (2007).

  28. 28.

    Gabrilovich, D., Ishida, T., Oyama, T., Ran, S., Kravtsov, V., Nadaf, S. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

  29. 29.

    Lu, R., Kujawski, M., Pan, H. & Shively, J. E. Tumor angiogenesis mediated by myeloid cells is negatively regulated by CEACAM1. Cancer Res. 72, 2239–2250 (2012).

  30. 30.

    Waller, E. K. The role of sargramostim (rhGM-CSF) as immunotherapy. Oncologist 12(Suppl 2), 22–26 (2007).

  31. 31.

    Bayne, L. J., Beatty, G. L., Jhala, N., Clark, C. E., Rhim, A. D., Stanger, B. Z. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 22–35 (2012).

  32. 32.

    Ma, N., Liu, Q., Hou, L., Wang, Y. & Liu, Z. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer. Int. J. Immunopathol. Pharm. 30, 152–162 (2017).

  33. 33.

    Morales, J. K., Kmieciak, M., Knutson, K. L., Bear, H. D. & Manjili, M. H. GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res. Treat. 123, 39–49 (2010).

  34. 34.

    Chen, S.-C., Chen, F.-W., Hsu, Y.-L., Kuo, P.-L., Chen, S.-C., Chen, F.-W. et al. Systematic analysis of transcriptomic profile of renal cell carcinoma under long-term hypoxia using next-generation sequencing and bioinformatics. Int. J. Mol. Sci. 18, 2657 (2017).

  35. 35.

    Schreck, R. & Baeuerle, P. A. NF-kappa B as inducible transcriptional activator of the granulocyte-macrophage colony-stimulating factor gene. Mol. Cell Biol. 10, 1281–1286 (1990).

  36. 36.

    Taki, M., Abiko, K., Baba, T., Hamanishi, J., Yamaguchi, K., Murakami, R. et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells via CXCR2 ligand upregulation. Nat. Commun. 9, 1685 (2018).

  37. 37.

    Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood Am. Soc. Hematol. 111, 4233–4244 (2008).

  38. 38.

    Youn, J.-I. & Gabrilovich, D. I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 40, 2969–2975 (2010).

  39. 39.

    Youn, J.-I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P. et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat. Immunol. 14, 211–220 (2013).

  40. 40.

    Beijnum Van, J. R., Nowak-sliwinska, P., Huijbers, E. J. M., Thijssen, V. L. & Griffioen, A. W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol. Rev. 67, 441–461 (2015).

  41. 41.

    Kloepper, J., Riedemann, L., Amoozgar, Z., Seano, G., Susek, K., Yu, V. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl Acad. Sci. USA 113, 4476–4481 (2016).

  42. 42.

    Waghray, M., Yalamanchili, M., Dziubinski, M., Zeinali, M., Erkkinen, M., Yang, H. et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov. 6, 886–899 (2016).

Download references

Acknowledgements

We thank Hana Ishiyama for her great technical assistance. We also thank Genentech for their gift of anti-mouse VEGF antibody.

Author information

Conceptualisation, N.H., K.A., N.M., T.B. and J.H.; methodology, N.H., K.A., N.M., T.B. and J.H.; investigation, N.H., R.M., M.U. and Y.H.; formal analysis, N.H. and R.M.; writing—original draft, N.H. and K.A.; writing—review and editing, K.A., N.M., T.B., J.H., K.Y., R.M. and M.T.; funding acquisition, K.A., N.M., T.B., J.H., M.K. and I.K.; supervision, I.K. and M.M.

Correspondence to Kaoru Abiko.

Ethics declarations

Ethics approval and consent to participate

The Ethics Committee of Kyoto University Hospital has approved the protocol for this research. The protocol also conforms to the provisions of the Declaration of Helsinki. All animal experiments were performed in accordance with the Guidelines for Proper Conduct of Animal Experiments announced by Science Council of Japan.

Consent to publish

Not applicable.

Data availability

Microarray datasets for this work are accessible on Gene Expression Omnibus website. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE115944).

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by a Grant-in Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT, No. 15H04309).

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horikawa, N., Abiko, K., Matsumura, N. et al. Anti-VEGF therapy resistance in ovarian cancer is caused by GM-CSF-induced myeloid-derived suppressor cell recruitment. Br J Cancer (2020) doi:10.1038/s41416-019-0725-x

Download citation