Cancer Metabolism

Metabolic rewiring and redox alterations in malignant pleural mesothelioma

Abstract

Malignant pleural mesothelioma (MPM) is a rare malignancy of mesothelial cells with increasing incidence, and in many cases, dismal prognosis due to its aggressiveness and lack of effective therapies. Environmental and occupational exposure to asbestos is considered the main aetiological factor for MPM. Inhaled asbestos fibres accumulate in the lungs and induce the generation of reactive oxygen species (ROS) due to the presence of iron associated with the fibrous silicates and to the activation of macrophages and inflammation. Chronic inflammation and a ROS-enriched microenvironment can foster the malignant transformation of mesothelial cells. In addition, MPM cells have a highly glycolytic metabolic profile and are positive in 18F-FDG PET analysis. Loss-of-function mutations of BRCA-associated protein 1 (BAP1) are a major contributor to the metabolic rewiring of MPM cells. A subset of MPM tumours show loss of the methyladenosine phosphorylase (MTAP) locus, resulting in profound alterations in polyamine metabolism, ATP and methionine salvage pathways, as well as changes in epigenetic control of gene expression. This review provides an overview of the perturbations in metabolism and ROS homoeostasis of MPM cells and the role of these alterations in malignant transformation and tumour progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Chew, S. H. & Toyokuni, S. Malignant mesothelioma as an oxidative stress-induced cancer: an update. Free Radic. Biol. Med. 86, 166–178 (2015).

  2. 2.

    Carbone, M., Adusumilli, P. S., Alexander, H. R. Jr., Baas, P., Bardelli, F., Bononi, A. et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 69, 402–429 (2019).

  3. 3.

    Felley-Bosco, E. & MacFarlane, M. Asbestos: modern insights for toxicology in the era of engineered nanomaterials. Chem. Res. Toxicol. 31, 994–1008 (2018).

  4. 4.

    Yoshikawa, Y., Sato, A., Tsujimura, T., Emi, M., Morinaga, T., Fukuoka, K. et al. Frequent inactivation of the BAP1 gene in epithelioid-type malignant mesothelioma. Cancer Sci. 103, 868–874 (2012).

  5. 5.

    Betti, M., Aspesi, A., Ferrante, D., Sculco, M., Righi, L., Mirabelli, D. et al. Sensitivity to asbestos is increased in patients with mesothelioma and pathogenic germline variants in BAP1 or other DNA repair genes. Genes Chromosomes Cancer 57, 573–583 (2018).

  6. 6.

    Carbone, M., Amelio, I., Affar, E. B., Brugarolas, J., Cannon-Albright, L. A., Cantley, L. C. et al. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ. 25, 1885–1904 (2018).

  7. 7.

    Pastorino S., Yoshikawa Y., Pass H. I., Emi M., Nasu M., Pagano I. et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.79.0352 (2018).

  8. 8.

    Hassan, R., Morrow, B., Thomas, A., Walsh, T., Lee, M. K., Gulsuner, S. et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc. Natl Acad. Sci. USA 116, 9008–9013 (2019).

  9. 9.

    Baumann, F., Flores, E., Napolitano, A., Kanodia, S., Taioli, E., Pass, H. et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis 36, 76–81 (2015).

  10. 10.

    Bayir, H. Reactive oxygen species. Crit. Care Med. 33, S498–S501 (2005).

  11. 11.

    Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 (2003).

  12. 12.

    Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2010).

  13. 13.

    Nordberg, J. & Arner, E. S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287–1312 (2001).

  14. 14.

    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. 55, 373–399 (2004).

  15. 15.

    Pascolo, L., Gianoncelli, A., Schneider, G., Salome, M., Schneider, M., Calligaro, C. et al. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci. Rep. 3, 1123 (2013).

  16. 16.

    Shukla, A., Gulumian, M., Hei, T. K., Kamp, D., Rahman, Q. & Mossman, B. T. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic. Biol. 34, 1117–1129 (2003).

  17. 17.

    Hardy, J. A. & Aust, A. E. The effect of iron binding on the ability of crocidolite asbestos to catalyze DNA single-strand breaks. Carcinogenesis 16, 319–325 (1995).

  18. 18.

    Toyokuni, S. Iron addiction with ferroptosis-resistance in asbestos-induced mesothelial carcinogenesis: toward the era of mesothelioma prevention. Free Radic Biol Med 133, 206–215 (2019).

  19. 19.

    Aung, W., Hasegawa, S., Furukawa, T. & Saga, T. Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. Carcinogenesis 28, 2047–2052 (2007).

  20. 20.

    Korchevskiy, A., Rasmuson, J. O. & Rasmuson, E. J. Empirical model of mesothelioma potency factors for different mineral fibers based on their chemical composition and dimensionality. Inhal. Toxicol. 31, 180–191 (2019).

  21. 21.

    Zebedeo, C. N., Davis, C., Pena, C., Ng, K. W. & Pfau, J. C. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice. Toxicol. Appl. Pharmacol. 275, 257–264 (2014).

  22. 22.

    Carbone, M., Baris, Y. I., Bertino, P., Brass, B., Comertpay, S., Dogan, A. U. et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc. Natl Acad. Sci. U S A 108, 13618–13623 (2011).

  23. 23.

    Gualtieri, A. F., Gandolfi, N. B., Pollastri, S., Pollok, K. & Langenhorst, F. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Sci. Rep. 6, 37981 (2016).

  24. 24.

    Larson, D., Powers, A., Ambrosi, J. P., Tanji, M., Napolitano, A., Flores, E. G. et al. Investigating palygorskite’s role in the development of mesothelioma in southern Nevada: Insights into fiber-induced carcinogenicity. J. Toxicol. Environ. Health B Crit. Rev. 19, 213–230 (2016).

  25. 25.

    Pietrofesa, R. A., Velalopoulou, A., Arguiri, E., Menges, C. W., Testa, J. R., Hwang, W. T. et al. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice. Carcinogenesis 37, 177–187 (2016).

  26. 26.

    Yang, H., Rivera, Z., Jube, S., Nasu, M., Bertino, P., Goparaju, C. et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc. Natl Acad. Sci. USA 107, 12611–12616 (2010).

  27. 27.

    Bianchi, M. E., Crippa, M. P., Manfredi, A. A., Mezzapelle, R., Rovere Querini, P. & Venereau, E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol. Rev. 280, 74–82 (2017).

  28. 28.

    Yu, Y., Tang, D. & Kang, R. Oxidative stress-mediated HMGB1 biology. Front. Physiol. 6, 93 (2015).

  29. 29.

    Kazama, H., Ricci, J. E., Herndon, J. M., Hoppe, G., Green, D. R. & Ferguson, T. A. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

  30. 30.

    Yang, H., Bocchetta, M., Kroczynska, B., Elmishad, A. G., Chen, Y., Liu, Z. et al. TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc. Natl Acad. Sci. USA 103, 10397–10402 (2006).

  31. 31.

    Hayden, M. S. & Ghosh, S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes. Dev. 26, 203–234 (2012).

  32. 32.

    Janssen, Y. M., Barchowsky, A., Treadwell, M., Driscoll, K. E. & Mossman, B. T. Asbestos induces nuclear factor kappa B (NF-kappa B) DNA-binding activity and NF-kappa B-dependent gene expression in tracheal epithelial cells. Proc. Natl Acad. Sci. USA 92, 8458–8462 (1995).

  33. 33.

    Faux, S. P. & Howden, P. J. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E. Environ. Health Persp. 105, 1127–1130 (1997).

  34. 34.

    Batlle, E. & Massague, J. Transforming growth factor-beta signaling inimmunity and cancer. Immunity 50, 924–940 (2019).

  35. 35.

    Bierie, B. & Moses, H. L. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 21, 49–59 (2010).

  36. 36.

    Robertson, I. B., Horiguchi, M., Zilberberg, L., Dabovic, B., Hadjiolova, K. & Rifkin, D. B. Latent TGF-beta-binding proteins. Matrix Biol. 47, 44–53 (2015).

  37. 37.

    Liu, R. M. & Desai, L. P. Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 6, 565–577 (2015).

  38. 38.

    Katz, L. H., Li, Y., Chen, J. S., Munoz, N. M., Majumdar, A., Chen, J. et al. Targeting TGF-beta signaling in cancer. Expert Opin. Ther. Targets 17, 743–760 (2013).

  39. 39.

    Bachman, K. E. & Park, B. H. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Curr. Opin. Oncol. 17, 49–54 (2005).

  40. 40.

    David, C. J. & Massague, J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat. Rev. 19, 419–435 (2018).

  41. 41.

    Derynck, R., Akhurst, R. J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001).

  42. 42.

    Gerwin, B. I., Lechner, J. F., Reddel, R. R., Roberts, A. B., Robbins, K. C., Gabrielson, E. W. et al. Comparison of production of transforming growth factor-beta and platelet-derived growth factor by normal human mesothelial cells and mesothelioma cell lines. Cancer Res. 47, 6180–6184 (1987).

  43. 43.

    DeLong, P., Carroll, R. G., Henry, A. C., Tanaka, T., Ahmad, S., Leibowitz, M. S. et al. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol. Ther. 4, 342–346 (2005).

  44. 44.

    Fujii, M., Toyoda, T., Nakanishi, H., Yatabe, Y., Sato, A., Matsudaira, Y. et al. TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J. Exp. Med. 209, 479–494 (2012).

  45. 45.

    Suzuki, E., Kapoor, V., Cheung, H. K., Ling, L. E., DeLong, P. A., Kaiser, L. R. et al. Soluble type II transforming growth factor-beta receptor inhibits established murine malignant mesothelioma tumor growth by augmenting host antitumor immunity. Clin. Cancer Res. 10, 5907–5918 (2004).

  46. 46.

    Suzuki, E., Kim, S., Cheung, H. K., Corbley, M. J., Zhang, X., Sun, L. et al. A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res. 67, 2351–2359 (2007).

  47. 47.

    Das, V., Bhattacharya, S., Chikkaputtaiah, C., Hazra, S. & Pal, M. The basics of epithelial-mesenchymal transition (EMT): a study from a structure, dynamics, and functional perspective. J cell. Physiol. https://doi.org/10.1002/jcp.28160 (2019).

  48. 48.

    Hao, Y., Baker, D. & Ten Dijke, P. TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112767 (2019).

  49. 49.

    Mutsaers, S. E., Birnie, K., Lansley, S., Herrick, S. E., Lim, C. B. & Prele, C. M. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 6, 113 (2015).

  50. 50.

    Fassina, A., Cappellesso, R., Guzzardo, V., Dalla Via, L., Piccolo, S., Ventura, L. et al. Epithelial-mesenchymal transition in malignant mesothelioma. Mod. Pathol. 25, 86–99 (2012).

  51. 51.

    Krstic, J., Trivanovic, D., Mojsilovic, S. & Santibanez, J. F. Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid. Med. Cell. Longev. 2015, 654594 (2015).

  52. 52.

    Jobling, M. F., Mott, J. D., Finnegan, M. T., Jurukovski, V., Erickson, A. C., Walian, P. J. et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat. Res. 166, 839–848 (2006).

  53. 53.

    Pociask, D. A., Sime, P. J. & Brody, A. R. Asbestos-derived reactive oxygen species activate TGF-beta1. Lab. Invest. 84, 1013–1023 (2004).

  54. 54.

    Nagai, H., Okazaki, Y., Chew, S. H., Misawa, N., Yasui, H. & Toyokuni, S. Deferasirox induces mesenchymal-epithelial transition in crocidolite-induced mesothelial carcinogenesis in rats. Cancer Prev. Res. 6, 1222–1230 (2013).

  55. 55.

    Turini, S., Bergandi, L., Gazzano, E., Prato, M. & Aldieri, E. Epithelial to mesenchymal transition in human mesothelial cells exposed to asbestos fibers: role of TGF-beta as mediator of malignant mesothelioma development or metastasis via EMT Event. Int. J. Mole. Sci. https://doi.org/10.3390/ijms20010150 (2019).

  56. 56.

    Byun, H. O., Jung, H. J., Seo, Y. H., Lee, Y. K., Hwang, S. C., Hwang, E. S. et al. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 318, 1808–1819 (2012).

  57. 57.

    Tanaka, M., Miura, Y., Numanami, H., Karnan, S., Ota, A., Konishi, H. et al. Inhibition of NADPH oxidase 4 induces apoptosis in malignant mesothelioma: role of reactive oxygen species. Oncology Rep. 34, 1726–1732 (2015).

  58. 58.

    Ko, J., Kang, H. J., Kim, D. A., Ryu, E. S., Yu, M., Lee, H. et al. Paricalcitol attenuates TGF-beta1-induced phenotype transition of human peritoneal mesothelial cells (HPMCs) via modulation of oxidative stress and NLRP3 inflammasome. FASEB J. 33, 3035–3050 (2019).

  59. 59.

    Kahlos, K., Soini, Y., Sormunen, R., Kaarteenaho-Wiik, R., Paakko, P., Linnainmaa, K. et al. Expression and prognostic significance of catalase in malignant mesothelioma. Cancer 91, 1349–1357 (2001).

  60. 60.

    Hillegass, J. M., Shukla, A., MacPherson, M. B., Lathrop, S. A., Alexeeva, V., Perkins, T. N. et al. Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells. Part. Fibre Toxicol. 7, 26 (2010).

  61. 61.

    Kinnula, V. L., Lehtonen, S., Sormunen, R., Kaarteenaho-Wiik, R., Kang, S. W., Rhee, S. G. et al. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J. Pathol. 196, 316–323 (2002).

  62. 62.

    Jiang, J., Wang, K., Chen, Y., Chen, H., Nice, E. C. & Huang, C. Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct. Target Ther. 2, 17036 (2017).

  63. 63.

    Min, C., Eddy, S. F., Sherr, D. H. & Sonenshein, G. E. NF-kappaB and epithelial to mesenchymal transition of cancer. J. Cell Biochem. 104, 733–744 (2008).

  64. 64.

    Balamurugan, K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer 138, 1058–1066 (2016).

  65. 65.

    Zanella, C. L., Posada, J., Tritton, T. R. & Mossman, B. T. Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res. 56, 5334–5338 (1996).

  66. 66.

    Pache, J. C., Janssen, Y. M., Walsh, E. S., Quinlan, T. R., Zanella, C. L., Low, R. B. et al. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am. J. Pathol. 152, 333–340 (1998).

  67. 67.

    Manning, C. B., Cummins, A. B., Jung, M. W., Berlanger, I., Timblin, C. R., Palmer, C. et al. A mutant epidermal growth factor receptor targeted to lung epithelium inhibits asbestos-induced proliferation and proto-oncogene expression. Cancer Res. 62, 4169–4175 (2002).

  68. 68.

    Jimenez, L. A., Zanella, C., Fung, H., Janssen, Y. M., Vacek, P., Charland, C. et al. Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am. J. Physiol. 273, L1029–L1035 (1997).

  69. 69.

    Su, B. & Karin, M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. opin. immunol. 8, 402–411 (1996).

  70. 70.

    Heintz, N. H., Janssen, Y. M. & Mossman, B. T. Persistent induction of c-fos and c-jun expression by asbestos. Proc. Natl Acad. Sci. USA 90, 3299–3303 (1993).

  71. 71.

    Timblin, C. R., Janssen, Y. W. & Mossman, B. T. Transcriptional activation of the proto-oncogene c-jun by asbestos and H2O2 is directly related to increased proliferation and transformation of tracheal epithelial cells. Cancer Res. 55, 2723–2726 (1995).

  72. 72.

    Fung, H., Quinlan, T. R., Janssen, Y. M., Timblin, C. R., Marsh, J. P., Heintz, N. H. et al. Inhibition of protein kinase C prevents asbestos-induced c-fos and c-jun proto-oncogene expression in mesothelial cells. Cancer Res. 57, 3101–3105 (1997).

  73. 73.

    Zanella, C. L., Timblin, C. R., Cummins, A., Jung, M., Goldberg, J., Raabe, R. et al. Asbestos-induced phosphorylation of epidermal growth factor receptor is linked to c-fos and apoptosis. Am. J. Physiol. 277, L684–L693 (1999).

  74. 74.

    Ramos-Nino, M. E., Timblin, C. R. & Mossman, B. T. Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res. 62, 6065–6069 (2002).

  75. 75.

    Carbone, M. & Yang, H. Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin. Cancer Res. 18, 598–604 (2012).

  76. 76.

    Wilson, S. M., Barbone, D., Yang, T. M., Jablons, D. M., Bueno, R., Sugarbaker, D. J. et al. mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids. Am. J. Res. Cell Mol. Biol. 39, 576–583 (2008).

  77. 77.

    Clerkin, J. S., Naughton, R., Quiney, C. & Cotter, T. G. Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett. 266, 30–36 (2008).

  78. 78.

    Connor, K. M., Subbaram, S., Regan, K. J., Nelson, K. K., Mazurkiewicz, J. E., Bartholomew, P. J. et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J. Biol. Chem. 280, 16916–16924 (2005).

  79. 79.

    Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579–591 (2009).

  80. 80.

    Silic-Benussi, M., Scattolin, G., Cavallari, I., Minuzzo, S., Del Bianco, P., Francescato, S. et al. Selective killing of human T-ALL cells: an integrated approach targeting redox homeostasis and the OMA1/OPA1 axis. Cell Death Dis. 9, 822 (2018).

  81. 81.

    Denis, I., Cellerin, L., Gregoire, M. & Blanquart, C. Cisplatin in combination with Phenethyl Isothiocyanate (PEITC), a potential new therapeutic strategy for malignant pleural mesothelioma. Oncotarget 5, 11641–11652 (2014).

  82. 82.

    Benedetti, S., Nuvoli, B., Catalani, S. & Galati, R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget 6, 16848–16865 (2015).

  83. 83.

    Kinnula, K., Linnainmaa, K., Raivio, K. O. & Kinnula, V. L. Endogenous antioxidant enzymes and glutathione S-transferase in protection of mesothelioma cells against hydrogen peroxide and epirubicin toxicity. Br. J. cancer 77, 1097–1102 (1998).

  84. 84.

    Hwang, K. E., Kim, Y. S., Hwang, Y. R., Kwon, S. J., Park, D. S., Cha, B. K. et al. Pemetrexed induces apoptosis in malignant mesothelioma and lung cancer cells through activation of reactive oxygen species and inhibition of sirtuin 1. Oncology Rep. 33, 2411–2419 (2015).

  85. 85.

    Chen, J., Solomides, C. & Simpkins, H. Sensitization of mesothelioma cells to platinum-based chemotherapy by GSTpi knockdown. Biochem. Biophys. Res. Commun. 447, 77–82 (2014).

  86. 86.

    Nuvoli, B., Camera, E., Mastrofrancesco, A., Briganti, S. & Galati, R. Modulation of reactive oxygen species via ERK and STAT3 dependent signalling are involved in the response of mesothelioma cells to exemestane. Free Radi. Biol. Med. 115, 266–277 (2018).

  87. 87.

    Cunniff, B., Newick, K., Nelson, K. J., Wozniak, A. N., Beuschel, S., Leavitt, B. et al. Disabling mitochondrial peroxide metabolism via combinatorial targeting of peroxiredoxin 3 as an effective therapeutic approach for malignant mesothelioma. PLoS One 10, e0127310 (2015).

  88. 88.

    Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

  89. 89.

    Francis, R. J., Byrne, M. J., van der Schaaf, A. A., Boucek, J. A., Nowak, A. K., Phillips, M. et al. Early prediction of response to chemotherapy and survival in malignant pleural mesothelioma using a novel semiautomated 3-dimensional volume-based analysis of serial 18F-FDG PET scans. J. Nucl. Med. 48, 1449–1458 (2007).

  90. 90.

    Ceresoli, G. L., Chiti, A., Zucali, P. A., Rodari, M., Lutman, R. F., Salamina, S. et al. Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J. Clin. Oncol. 24, 4587–4593 (2006).

  91. 91.

    Nowak, A. K., Armato, S. G. 3rd, Ceresoli, G. L., Yildirim, H. & Francis, R. J. Imaging in pleural mesothelioma: a review of imaging research presented at the 9th International Meeting of the International Mesothelioma Interest Group. Lung Cancer 70, 1–6 (2010).

  92. 92.

    Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. 11, 85–95 (2011).

  93. 93.

    Kappler, M., Taubert, H., Schubert, J., Vordermark, D. & Eckert, A. W. The real face of HIF1alpha in the tumor process. Cell Cycle 11, 3932–3936 (2012).

  94. 94.

    Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. 3, 721–732 (2003).

  95. 95.

    Sciacovelli, M. & Frezza, C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284, 3132–3144 (2017).

  96. 96.

    Varghese, S., Chen, Z., Bartlett, D. L., Pingpank, J. F., Libutti, S. K., Steinberg, S. M. et al. Activation of the phosphoinositide-3-kinase and mammalian target of rapamycin signaling pathways are associated with shortened survival in patients with malignant peritoneal mesothelioma. Cancer 117, 361–371 (2011).

  97. 97.

    Altomare, D. A., You, H., Xiao, G. H., Ramos-Nino, M. E., Skele, K. L., De Rienzo, A. et al. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24, 6080–6089 (2005).

  98. 98.

    Kaira, K., Serizawa, M., Koh, Y., Takahashi, T., Hanaoka, H., Oriuchi, N. et al. Relationship between 18F-FDG uptake on positron emission tomography and molecular biology in malignant pleural mesothelioma. Eur. J. Cancer 48, 1244–1254 (2012).

  99. 99.

    Bononi, A., Giorgi, C., Patergnani, S., Larson, D., Verbruggen, K., Tanji, M. et al. BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017). e-pub ahead of print 2017/06/15.

  100. 100.

    Colegio, O. R., Chu, N. Q., Szabo, A. L., Chu, T., Rhebergen, A. M., Jairam, V. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

  101. 101.

    Hirschhaeuser, F., Sattler, U. G. & Mueller-Klieser, W. Lactate: a metabolic key player in cancer. Cancer Res. 71, 6921–6925 (2011).

  102. 102.

    Hajnóczky, G., Csordás, G., Das, S., Garcia-Perez, C., Saotome, M., Roy, S. S. et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40, 553–560 (2006).

  103. 103.

    Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A. & Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl Acad. Sci. USA 96, 13807–13812 (1999).

  104. 104.

    Hebert, L., Bellanger, D., Guillas, C., Campagne, A., Dingli, F., Loew, D. et al. Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function. Oncotarget 8, 72513–72527 (2017).

  105. 105.

    Geoghegan, F., Buckland, R. J., Rogers, E. T., Khalifa, K., O’Connor, E. B., Rooney, M. F. et al. Bioenergetics of acquired cisplatin resistant H1299 non-small cell lung cancer and P31 mesothelioma cells. Oncotarget 8, 94711–94725 (2017).

  106. 106.

    Sato, Y., Matsuda, S., Maruyama, A., Nakayama, J., Miyashita, T., Udagawa, H. et al. Metabolic characterization of antifolate responsiveness and non-responsiveness in malignant pleural mesothelioma cells. Fronti. Pharmacol. 9, 1129 (2018).

  107. 107.

    Qin, Y., Sekine, I., Hanazono, M., Morinaga, T., Fan, M., Takiguchi, Y. et al. AMPK activation induced in pemetrexed-treated cells is associated with development of drug resistance independently of target enzyme expression. Mole. Oncol. 13, 1419–1432 (2019).

  108. 108.

    Kitazono-Saitoh, M., Takiguchi, Y., Kitazono, S., Ashinuma, H., Kitamura, A., Tada, Y. et al. Interaction and cross-resistance of cisplatin and pemetrexed in malignant pleural mesothelioma cell lines. Oncol. Rep. 28, 33–40 (2012).

  109. 109.

    Zucali, P. A., Giovannetti, E., Destro, A., Mencoboni, M., Ceresoli, G. L., Gianoncelli, L. et al. Thymidylate synthase and excision repair cross-complementing group-1 as predictors of responsiveness in mesothelioma patients treated with pemetrexed/carboplatin. Clin. Cancer Res. 17, 2581–2590 (2011).

  110. 110.

    Mairinger, F. D., Vollbrecht, C., Flom, E., Christoph, D. C., Schmid, K. W., Kollmeier, J. et al. Folic acid phenotype (FAP) is a superior biomarker predicting response to pemetrexed-based chemotherapy in malignant pleural mesothelioma. Oncotarget 8, 37502–37510 (2017).

  111. 111.

    Giovannetti, E., Zucali, P. A., Assaraf, Y. G., Funel, N., Gemelli, M., Stark, M. et al. Role of proton-coupled folate transporter in pemetrexed resistance of mesothelioma: clinical evidence and new pharmacological tools. Ann. Oncol. 28, 2725–2732 (2017).

  112. 112.

    Illei, P. B., Rusch, V. W., Zakowski, M. F. & Ladanyi, M.Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Cancer Res. 9, 2108–2113 (2003).

  113. 113.

    Casero, R. A. Jr., Murray Stewart, T. & Pegg, A. E.Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat. Rev. Cancer 18, 681–695 (2018).

  114. 114.

    Kindler, H. L., Burris, H. A. 3rd, Sandler, A. B. & Oliff, I. A.A phase II multicenter study of L-alanosine, a potent inhibitor of adenine biosynthesis, in patients with MTAP-deficient cancer. Invest. New Drugs 27, 75–81 (2009).

  115. 115.

    Mavrakis, K. J., McDonald, E. R. 3rd, Schlabach, M. R., Billy, E., Hoffman, G. R., deWeck, A. et al.Disordered methionine metabolism in MTAP/CDKN2A–deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

  116. 116.

    Kryukov, G. V., Wilson, F. H., Ruth, J. R., Paulk, J., Tsherniak, A., Marlow, S. E. et al.MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

  117. 117.

    Marjon, K., Cameron, M. J., Quang, P., Clasquin, M. F., Mandley, E., Kunii, K. et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15, 574–587 (2016).

  118. 118.

    Karkhanis, V., Hu, Y. J., Baiocchi, R. A., Imbalzano, A. N. & Sif, S. Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem. Sci. 36, 633–641 (2011).

  119. 119.

    Friesen, W. J., Paushkin, S., Wyce, A., Massenet, S., Pesiridis, G. S., Van Duyne, G. et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol. Cell Biol. 21, 8289–8300 (2001).

  120. 120.

    Friesen, W. J., Wyce, A., Paushkin, S., Abel, L., Rappsilber, J., Mann, M. et al. A novel WD repeat protein component of the methylosome binds Sm proteins. J. Biol. Chem. 277, 8243–8247 (2002).

  121. 121.

    Altomare, D. A., Vaslet, C. A., Skele, K. L., De Rienzo, A., Devarajan, K., Jhanwar, S. C. et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 65, 8090–8095 (2005).

  122. 122.

    Tang, B., Testa, J. R. & Kruger, W. D. Increasing the therapeutic index of 5-fluorouracil and 6-thioguanine by targeting loss of MTAP in tumor cells. Cancer Biol. Ther. 13, 1082–1090 (2012).

  123. 123.

    Szlosarek, P. W., Klabatsa, A., Pallaska, A., Sheaff, M., Smith, P., Crook, T. et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res. 12, 7126–7131 (2006).

  124. 124.

    Delage, B., Fennell, D. A., Nicholson, L., McNeish, I., Lemoine, N. R., Crook, T. et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 126, 2762–2772 (2010).

  125. 125.

    Szlosarek, P. W., Steele, J. P., Nolan, L., Gilligan, D., Taylor, P., Spicer, J. et al. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol. 3, 58–66 (2017).

  126. 126.

    Yap, T. A., Aerts, J. G., Popat, S. & Fennell, D. A. Novel insights into mesothelioma biology and implications for therapy. Nature Rev. 17, 475–488 (2017).

  127. 127.

    Comertpay, S., Pastorino, S., Tanji, M., Mezzapelle, R., Strianese, O., Napolitano, A. et al. Evaluation of clonal origin of malignant mesothelioma. J. Transl. Med. 12, 301 (2014).

Download references

Acknowledgements

The authors thank D.M. D’Agostino for discussions.

Author information

L.U., I.C., E.S., F.C., G.P. and V.C. wrote the paper, prepared the figures and revised the final version of the paper.

Correspondence to Vincenzo Ciminale.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Funding

This work was supported by 5 × 1000 funds of the Veneto Institute of Oncology IOV-IRCCS and by a grant by the Italian Association for Cancer Research (AIRC IG17794).

Consent to publish

Not applicable.

Data availability

Not applicable.

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urso, L., Cavallari, I., Sharova, E. et al. Metabolic rewiring and redox alterations in malignant pleural mesothelioma. Br J Cancer 122, 52–61 (2020). https://doi.org/10.1038/s41416-019-0661-9

Download citation

Further reading