Article | Published:

Molecular Diagnostics

Alterations in serum amino-acid profile in the progression of colorectal cancer: associations with systemic inflammation, tumour stage and patient survival

British Journal of Cancervolume 120pages238246 (2019) | Download Citation



Cancer cachexia is a complex wasting syndrome affecting patients with advanced cancer, with systemic inflammation as a key component in pathogenesis. Protein degradation and release of amino acids (AAs) in skeletal muscle are stimulated in cachexia. Here, we define factors contributing to serum AA levels in colorectal cancer (CRC).


Serum levels of nine AAs were characterised in 336 CRC patients and their relationships with 20 markers of systemic inflammatory reaction, clinicopathological features of cancers and patient survival were analysed.


Low serum glutamine and histidine levels and high phenylalanine levels associated with indicators of systemic inflammation, including high modified Glasgow Prognostic Score, high blood neutrophil/lymphocyte ratio and high serum levels of CRP, IL-6 and IL-8. Low levels of serum glutamine, histidine, alanine and high glycine levels also associated with advanced cancer stage and with poor cancer-specific survival in univariate analysis.


In CRC, serum AA levels are associated with systemic inflammation and disease stage. These findings may reflect muscle catabolism induced by systemic inflammation in CRC.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

  2. 2.

    Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–62 (2014).

  3. 3.

    Fearon, K., Strasser, F., Anker, S. D., Bosaeus, I., Bruera, E. & Fainsinger, R. L. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–95 (2011).

  4. 4.

    Zhou, X., Wang, J. L., Lu, J., Song, Y., Kwak, K. S. & Jiao, Q. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–43 (2010).

  5. 5.

    Falconer, J. S., Fearon, K. C., Ross, J. A., Elton, R., Wigmore, S. J. & Garden, O. J. et al. Acute-phase protein response and survival duration of patients with pancreatic cancer. Cancer 75, 2077–82 (1995).

  6. 6.

    Punzi, T., Fabris, A., Morucci, G., Biagioni, P., Gulisano, M. & Ruggiero, M. et al. C-reactive protein levels and vitamin d receptor polymorphisms as markers in predicting cachectic syndrome in cancer patients. Mol. Diagn. Ther. 16, 115–24 (2012).

  7. 7.

    Mantovani, G., Macciò, A., Mura, L., Massa, E., Mudu, M. C. & Mulas, C. et al. Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites. J. Mol. Med. 78, 554–61 (2000).

  8. 8.

    Strassmann, G., Fong, M., Kenney, J. S. & Jacob, C. O. Evidence for the involvement of interleukin 6 in experimental cancer cachexia. Am. Soc. Clin. Investig. 89, 1681–4 (1992).

  9. 9.

    Kantola, T., Klintrup, K., Väyrynen, J. P., Vornanen, J., Bloigu, R. & Karhu, T. et al. Stage-dependent alterations of the serum cytokine pattern in colorectal carcinoma. Br. J. Cancer 107, 1729–36 (2012).

  10. 10.

    McMillan, D. C. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev. 39, 534–40 (2013).

  11. 11.

    Su, L., Li, H., Xie, A., Liu, D., Rao, W. & Lan, L. et al. Dynamic changes in amino acid concentration profiles in patients with sepsis. PLoS ONE 10, e0121933 (2015).

  12. 12.

    Jackson, N. C., Carroll, P. V., Russell-Jones, D. L., Sönksen, P. H., Treacher, D. F. & Umpleby, A. M. The metabolic consequences of critical illness: acute effects on glutamine and protein metabolism. Am. J. Physiol. 276(1 Pt 1), E163–70 (1999).

  13. 13.

    Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest 123, 3678–84 (2013).

  14. 14.

    Leichtle, A. B., Nuoffer, J.-M., Ceglarek, U., Kase, J., Conrad, T. & Witzigmann, H. et al. Serum amino acid profiles and their alterations in colorectal cancer. Metabolomics 8, 643–53 (2012).

  15. 15.

    Lee J-C, Chen M-J, Chang C-H, Tiai Y-F, Lin P-W, Lai H-S, et al. Plasma amino acid levels in patients with colorectal cancers and liver cirrhosis with hepatocellular carcinoma. Hepatogastroenterology 50,1269–73 (2003).

  16. 16.

    Farshidfar, F., Weljie, A. M., Kopciuk, K. A., Hilsden, R., McGregor, S. E. & Buie, W. D. et al. A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics. Br. J. Cancer 115, 848–57 (2016).

  17. 17.

    Väyrynen, J. P., Tuomisto, A., Väyrynen, S. A., Klintrup, K., Karhu, T. & Mäkelä, J. et al. Preoperative anemia in colorectal cancer: relationships with tumour characteristics, systemic inflammation, and survival. Sci. Rep. 8, 1126 (2018).

  18. 18.

    Moilanen, J. M., Kokkonen, N., Löffek, S., Väyrynen, J. P., Syväniemi, E. & Hurskainen, T. et al. Collagen XVII expression correlates with the invasion and metastasis of colorectal cancer. Hum Pathol. 46, 434–42 (2015).

  19. 19.

    Kantola, T., Väyrynen, J. P., Klintrup, K., Mäkelä, J., Karppinen, S. M. & Pihlajaniemi, T. et al. Serum endostatin levels are elevated in colorectal cancer and correlate with invasion and systemic inflammatory markers. Br. J. Cancer 111, 1605–13 (2014).

  20. 20.

    McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M. & Clark, G. M. et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br. J. Cancer 93, 387–91 (2005).

  21. 21.

    Hamilton, S. R., Bosman, F. T., Boffetta, P., Ilyas, M., Morreau, H. & Nakamura, S. I. et al. Carcinoma of the colon and rectum. In: F. Bosman, F. Carneiro, R. Hruban, N. Theise eds. WHO classification of tumours of the digestive system. pp. 134–46. (IARC Press, Lyon, 2010).

  22. 22.

    Väyrynen, S. A., Väyrynen, J. P., Klintrup, K., Mäkelä, J., Karttunen, T. J. & Tuomisto, A. et al. Clinical impact and network of determinants of tumour necrosis in colorectal cancer. Br. J. Cancer 114, 1334–42 (2016).

  23. 23.

    Väyrynen, J. P., Sajanti, S. A., Klintrup, K., Mäkelä, J., Herzig, K.-H. & Karttunen, T. J. et al. Characteristics and significance of colorectal cancer associated lymphoid reaction. Int J. Cancer 134, 2126–35 (2014).

  24. 24.

    Väyrynen, J. P., Vornanen, J., Tervahartiala, T., Sorsa, T., Bloigu, R. & Salo, T. et al. Serum MMP-8 levels increase in colorectal cancer and correlate with disease course and inflammatory properties of primary tumors. Int J. Cancer 131, E463–74 (2012).

  25. 25.

    Sajanti, S. A., Väyrynen, J. P., Sirniö, P., Klintrup, K., Mäkelä, J. & Tuomisto, A. et al. Annexin A10 is a marker for the serrated pathway of colorectal carcinoma. Virchows Arch. 466, 5–12 (2015).

  26. 26.

    Sajanti SA, Sirniö P, Väyrynen JP, Tuomisto A, Klintrup K, Mäkelä J, et al. VE1 immunohistochemistry accurately detects BRAF V600E mutations in colorectal carcinoma and can be utilized in the detection of poorly differentiated colorectal serrated adenocarcinoma. Virchows Arch. 464, 61–68 (2014).

  27. 27.

    Väyrynen, J. P., Tuomisto, A., Klintrup, K., Mäkelä, J., Karttunen, T. J. & Mäkinen, M. J. Detailed analysis of inflammatory cell infiltration in colorectal cancer. Br. J. Cancer 109, 1839–47 (2013).

  28. 28.

    Sirniö, P., Tuomisto, A., Tervahartiala, T., Sorsa, T., Klintrup, K. & Karhu, T. et al. High-serum MMP-8 levels are associated with decreased survival and systemic inflammation in colorectal cancer. Br. J. Cancer 119, 213–9 (2018).

  29. 29.

    Väyrynen, J. P., Vornanen, J. O., Sajanti, S., Böhm, J. P., Tuomisto, A. & Mäkinen, M. J. An improved image analysis method for cell counting lends credibility to the prognostic significance of T cells in colorectal cancer. Virchows Arch. 460, 455–65 (2012).

  30. 30.

    Sirniö, P., Väyrynen, J. P., Klintrup, K., Mäkelä, J., Mäkinen, M. J. & Karttunen, T. J. et al. Decreased serum apolipoprotein A1 levels are associated with poor survival and systemic inflammatory response in colorectal cancer. Sci. Rep. 7, 5374 (2017).

  31. 31.

    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T. & Ramage, D. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–504 (2003).

  32. 32.

    Laposata, M. In: M. Weitz, C. Yoo eds. Laboratory Medicine: The diagnosis of disease in the clinical laboratory. 2nd edn, (McGraw-Hill, New York, NY, 2014).

  33. 33.

    Guthrie, G. J. K., Charles, K. A., Roxburgh, C. S. D., Horgan, P. G., McMillan, D. C. & Clarke, S. J. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit. Rev. Oncol. Hematol. 88, 218–30 (2013).

  34. 34.

    Mäkinen, M. J. Colorectal serrated adenocarcinoma. Histopathology 50, 131–50 (2007).

  35. 35.

    Yuneva, M. O., Fan, T. W. M., Allen, T. D., Higashi, R. M., Ferraris, D. V. & Tsukamoto, T. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–70 (2012).

  36. 36.

    Kao, C. C., Bandi, V., Guntupalli, K. K., Wu, M., Castillo, L. & Jahoor, F. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin. Sci. (Lond.) 117, 23–30 (2009).

  37. 37.

    Oudemans-van Straaten, H. M., Bosman, R. J., Treskes, M., van der Spoel, H. J. & Zandstra, D. F. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 27, 84–90 (2001).

  38. 38.

    Kao, C., Hsu, J., Bandi, V. & Jahoor, F. Alterations in glutamine metabolism and its conversion to citrulline in sepsis. Am. J. Physiol. Endocrinol. Metab. 304, E1359–64 (2013).

  39. 39.

    Carr, E. L., Kelman, A., Wu, G. S., Gopaul, R., Senkevitch, E. & Aghvanyan, A. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–44 (2010).

  40. 40.

    Frauwirth, K. A., Riley, J. L., Harris, M. H., Parry, R. V., Rathmell, J. C. & Plas, D. R. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–77 (2002).

  41. 41.

    Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N. Engl J. Med. 340, 448–54 (1999).

  42. 42.

    Flint, T. R., Janowitz, T., Connell, C. M., Roberts, E. W., Denton, A. E. & Coll, A. P. et al. Tumor-induced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab. 24, 672–84 (2016).

  43. 43.

    Tsujinaka, T., Ebisui, C., Fujita, J., Kishibuchi, M., Morimoto, T. & Ogawa, A. et al. Muscle undergoes atrophy in association with increase of lysosomal cathepsin activity in interleukin-6 transgenic mouse. Biochem Biophys. Res Commun. 207, 168–74 (1995).

  44. 44.

    Ohe, Y., Podack, E. R., Olsen, K. J., Miyahara, Y., Miura, K. & Saito, H. et al. Interleukin-6 cDNA transfected Lewis lung carcinoma cells show unaltered net tumour growth rate but cause weight loss and shortened survival in syngeneic mice. Br. J. Cancer 67, 939–44 (1993).

  45. 45.

    van Hall, G., Steensberg, A., Fischer, C., Keller, C., Møller, K. & Moseley, P. et al. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals. J. Clin. Endocrinol. Metab. 93, 2851–8 (2008).

  46. 46.

    Masini, E., Fabbroni, V., Giannini, L., Vannacci, A., Messerini, L. & Perna, F. et al. Histamine and histidine decarboxylase up-regulation in colorectal cancer: correlation with tumor stage. Inflamm. Res. 54, S80–1 (2005).

  47. 47.

    Desai, A., Jung, M.-Y., Olivera, A., Gilfillan, A. M., Prussin, C. & Kirshenbaum, A. S. et al. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J. Allergy Clin. Immunol. 137, 1863–.e6 (2016).

  48. 48.

    Mayers, J. R., Wu, C., Clish, C. B., Kraft, P., Torrence, M. E. & Fiske, B. P. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–8 (2014).

  49. 49.

    Roux, C., Riganti, C., Borgogno, S. F., Curto, R., Curcio, C. & Catanzaro, V. et al. Endogenous glutamine decrease is associated with pancreatic cancer progression. Oncotarget 8, 95361–76 (2017).

  50. 50.

    Ollenschläger, G., Jansen, S., Schindler, J., Rasokat, H., Schrappe-Bächer, M. & Roth, E. Plasma amino acid pattern of patients with HIV infection. Clin. Chem. 34, 1787–9 (1988).

  51. 51.

    Rath, T., Roth, E., Keidl, R. & Meissl, G. Phenylalanine: total amino acid ratio in 45 burn patients. Scand. J. Plast. Reconstr. Surg. Hand Surg. 21, 297–300 (1987).

  52. 52.

    Watanabe, A., Higashi, T., Sakata, T. & Nagashima, H. Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54, 1875–82 (1984).

  53. 53.

    Okano, Y. & Nagasaka, H. Optimal serum phenylalanine for adult patients with phenylketonuria. Mol. Genet. Metab. 110, 424–30 (2013).

  54. 54.

    Pitkänen, H. T., Oja, S. S., Kemppainen, K., Seppä, J. M. & Mero, A. A. Serum amino acid concentrations in aging men and women. Amino Acids 24, 413–21 (2003).

Download references


We thank Ms. Riitta Vuento for her excellent assistance in the preparation of the study material. This work was supported by grants from Thelma Mäkikyrö Foundation, Emil Aaltonen Foundation, Finnish Cancer Society, K. Albin Johansson Foundation and Orion Research Foundation.

Author information


  1. Cancer and Translational Medicine Research Unit, University of Oulu, POB 5000, 90014, Oulu, Finland

    • Päivi Sirniö
    • , Juha P. Väyrynen
    • , Ilkka Minkkinen
    • , Markus J. Mäkinen
    • , Tuomo J. Karttunen
    •  & Anne Tuomisto
  2. Oulu University Hospital and Medical Research Center Oulu, POB 21, 90029, Oulu, Finland

    • Päivi Sirniö
    • , Juha P. Väyrynen
    • , Kai Klintrup
    • , Jyrki Mäkelä
    • , Karl-Heinz Herzig
    • , Ilkka Minkkinen
    • , Markus J. Mäkinen
    • , Tuomo J. Karttunen
    •  & Anne Tuomisto
  3. Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, POB 5000, 90014, Oulu, Finland

    • Kai Klintrup
    •  & Jyrki Mäkelä
  4. Department of Physiology, Research Unit of Biomedicine and Biocenter Oulu, University of Oulu, POB 5000, 90014, Oulu, Finland

    • Toni Karhu
    •  & Karl-Heinz Herzig
  5. Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, ul. Szpitalna 27/33, 60-572, Poznan, Poland

    • Karl-Heinz Herzig


  1. Search for Päivi Sirniö in:

  2. Search for Juha P. Väyrynen in:

  3. Search for Kai Klintrup in:

  4. Search for Jyrki Mäkelä in:

  5. Search for Toni Karhu in:

  6. Search for Karl-Heinz Herzig in:

  7. Search for Ilkka Minkkinen in:

  8. Search for Markus J. Mäkinen in:

  9. Search for Tuomo J. Karttunen in:

  10. Search for Anne Tuomisto in:


Study conception and design: P. Sirniö, J.P. Väyrynen, A. Tuomisto. Data collection: P. Sirniö, J.P. Väyrynen, K. Klintrup, J. Mäkelä, T. Karhu, K.-H. Herzig, I. Minkkinen, M.J. Mäkinen, T.J. Karttunen, A. Tuomisto. Statistical analysis: P. Sirniö, J.P. Väyrynen, A. Tuomisto. Manuscript draft: P. Sirniö, J. P. Väyrynen, A. Tuomisto. Manuscript review and editing: P. Sirniö, J.P. Väyrynen, K. Klintrup, J. Mäkelä, T. Karhu, K.-H. Herzig, I. Minkkinen, M.J. Mäkinen, T. J. Karttunen, A. Tuomisto.

Compliance with ethical standards:

 The study was approved by the Ethical Committee of Oulu University Hospital (58/2005, 184/2009) and was performed in accordance with the Declaration of Helsinki. All patients had signed an informed consent to participate.

Data availability

The data sets generated and analysed during the current study are available from the corresponding author on reasonable request.

Conflict of interest

The authors declare that they have no conflict of interest.


This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Corresponding author

Correspondence to Anne Tuomisto.

Electronic supplementary material

About this article

Publication history





Issue Date