Review Article | Published:

Immunotherapy

Cell-based immunotherapy approaches for multiple myeloma

Abstract

Despite the arrival of novel therapies, multiple myeloma (MM) remains incurable and new treatment options are needed. Chimeric antigen receptor (CAR) T cells are genetically modified T cells that express a CAR directed against specific tumour antigens. CAR T cells are able to kill target tumour cells and may result in long-lasting immune responses in vivo. The rapid development of CAR technologies has led to clinical trials in haematological cancers including MM, and CAR T cells might evolve into a standard treatment in the next few years. Only small patient cohorts with relapsed or refractory disease have so far been investigated, but promising preliminary results with high response rates have been  obtained in phase I clinical trials with B cell maturation antigen (BCMA), CD19, CD38 and κ-light-chain CAR T cells. Additional preclinical studies on CD38 and SLAMF7-CAR T cells in MM treatment yielded preclinical results that merit further investigation. Beyond the T cell approach, recent studies have focussed on CAR natural killer (NK) cells in order to increase the reactivity of these effector cells. Finally, to investigate the targeting of intracellular antigens, cellular therapies based on engineered T cell receptors (TCRs) are in development. In this review, we discuss results from preclinical and early-phase clinical trials testing the feasibility and safety of CAR T cell administration in MM, as well as early studies into approaches that utilise CAR NK cell and genetically modified TCRs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Palumbo, A. et al. Personalized therapy in multiple myeloma according to patient age and vulnerability: a report of the European Myeloma Network (EMN). Blood 118, 4519–4529 (2011).

  2. 2.

    Moreau, P., Attal, M. & Facon, T. Frontline therapy of multiple myeloma. Blood 125, 3076–3084 (2015).

  3. 3.

    Moreau, P. et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28(Suppl. 4), iv52–iv61 (2017).

  4. 4.

    Palumbo, A. et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J. Clin. Oncol. 33, 2863–2869 (2015).

  5. 5.

    June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

  6. 6.

    Hudecek, M. & Einsele, H. Myeloma CARs are rolling into the clinical arena. Blood 128, 1667–1668 (2016).

  7. 7.

    Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

  8. 8.

    Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

  9. 9.

    Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

  10. 10.

    Salter, A. I., Pont, M. J. & Riddell, S. R. Chimeric antigen receptor modified T cells: CD19 and the road beyond. Blood. 131, 2621–2629. (2018).

  11. 11.

    Nagle, S. J., Garfall, A. L. & Stadtmauer, E. A. The promise of chimeric antigen receptor engineered T cells in the treatment of hematologic malignancies. Cancer J. 22, 27–33 (2016).

  12. 12.

    Sohail, A. et al. Emerging immune targets for the treatment of multiple myeloma. Immunotherapy 10, 265–282 (2018).

  13. 13.

    CAR T cell therapy impresses in multiple myeloma. Cancer Discov. 8: OF2 (2018). https://doi.org/10.1158/2159-8290

  14. 14.

    Prommersberger, S. et al. Novel targets and technologies for CAR-T cells in multiple myeloma and acute myeloid leukemia. Curr. Res. Transl. Med. 66, 37–38 (2018).

  15. 15.

    Mikkilineni, L. & Kochenderfer, J. N. Chimeric antigen receptor T cell therapies for multiple myeloma. Blood 130, 2594–2602 (2017).

  16. 16.

    Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

  17. 17.

    Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

  18. 18.

    Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

  19. 19.

    Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

  20. 20.

    Carpenter, R. O. et al. B-cell maturation antigen is a promising target for adoptive T cell therapy of multiple myeloma. Cancer Res. 19, 2048–2060 (2013).

  21. 21.

    Mackay, F., Schneider, P., Rennert, P., Browning, J. & BAFF, A. N. D. APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 21, 231–264 (2003).

  22. 22.

    Ali, S. A. et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

  23. 23.

    Brudno, J. et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor with a CD28 costimulatory moiety cause remissions of poor-prognosis relapsed multiple myeloma. Blood 130(Suppl. 1), 524 (2017).

  24. 24.

    Cohen, A. D. et al. B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) for multiple myeloma (MM): initial safety and efficacy from a phase I study. Blood 128, 1147 (2016).

  25. 25.

    Cohen, A. D. et al. Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM). Blood 130(Suppl. 1), 505 (2017).

  26. 26.

    Berdeja, J. G. et al. First-in-human multicenter study of bb2121 anti-BCMA CAR T cell therapy for relapsed/refractory multiple myeloma: updated results. J. Clin. Oncol. 35(Suppl.), 3010 (2017).

  27. 27.

    Berdeja, J. G. et al. Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: updated results from a multicenter study of bb2121 anti-BCMA CAR T cell therapy. Blood 130(Suppl. 1), 740 (2017).

  28. 28.

    Smith, E. L. et al. Development and evaluation of a human single chain variable fragment (scFv) derived BCMA targeted CAR T cell vector leads to a high objective response rate in patients with advanced MM. Blood 130(Suppl. 1), 742 (2017).

  29. 29.

    Smith, E. L. et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther. 26, 1447–1456 (2018).

  30. 30.

    Fan, F. et al. Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J. Clin. Oncol. 35(Suppl)., LBA3001–LBA3001 (2017).

  31. 31.

    Mi, J.-Q. et al. Effective treatment of relapsed/refractory multiple myeloma including extramedullary involvement by BCMA-specific chimeric antigen receptor-modified T cells. Blood 130(Suppl. 1), 3115 (2017).

  32. 32.

    ClinicalTrials.gov. CART-19 for Multiple Myeloma, NCT021354062014 (updated 16.03.2017). Available from: https://clinicaltrials.gov/ct2/show/record/NCT02135406

  33. 33.

    Garfall, A. L. et al. Chimeric antigen receptor T Ccells against CD19 for multiple myeloma. N. Engl. J. Med. 373, 1040–1047 (2015).

  34. 34.

    Garfall, A. L. et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 3, pii: 120505. https://doi.org/10.1172/jci.insight.120505. (2018).

  35. 35.

    Tembhare, P. R. et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk. Res. 38, 371–376 (2014).

  36. 36.

    Shimabukuro-Vornhagen, A., Schloesser, H. & Bergwelt-Baildon, M. S. Chimeric antigen receptor T cells in myeloma. N. Engl. J. Med. 374, 193–194 (2016).

  37. 37.

    Palaiologou, M., Delladetsima, I. & Tiniakos, D. CD138 (syndecan-1) expression in health and disease. Histol. Histopathol. 29, 177–189 (2014).

  38. 38.

    Guo, B. et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J. Cell Immunother. 2, 28–35 (2016).

  39. 39.

    Ramos, C. A. et al. Clinical responses with T lymphocytes targeting malignancy-associated kappa light chains. J. Clin. Invest. 126, 2588–2596 (2016).

  40. 40.

    Jamieson, A. M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

  41. 41.

    Lanier, L. L. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 3, 575–582 (2015).

  42. 42.

    Spear, P., Barber, A., Rynda-Apple, A. & Sentman, C. L. NKG2D CAR T cell therapy inhibits the growth of NKG2D ligand heterogeneous tumors. Immunol. Cell Biol. 91, 435–440 (2013).

  43. 43.

    Nikiforow, S. et al. Safety data from a first-in-human phase 1 trial of NKG2D chimeric antigen receptor-T cells in AML/MDS and multiple myeloma. Blood 128, 4052 (2016).

  44. 44.

    Hsi, E. D. et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 14, 2775–2784 (2008).

  45. 45.

    Lee, J. K., Mathew, S. O., Vaidya, S. V., Kumaresan, P. R. & Mathew, P. A. CS1 (CRACC, CD319) induces proliferation and autocrine cytokine expression on human B lymphocytes. J. Immunol. 179, 4672–4678 (2007).

  46. 46.

    Frigyesi, I. et al. Robust isolation of malignant plasma cells in multiple myeloma. Blood 123, 1336–1340 (2014).

  47. 47.

    Malaer, J. D. & Mathew, P. A. CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am. J. Cancer Res. 7, 1637–1641 (2017).

  48. 48.

    Richardson, P. G., Jagannath, S. & Moreau, P. Final results for the 1703 phase 1B/2 study of elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma. In 56th ASH Annual Meeting and Exposition Lancet Haematol. 2, e516–27. (2015).

  49. 49.

    Usmani, S. Z., Sexton, R. & Ailawadhi,S. Initial report on PHASE I Trial of RVD-elotuzumab for newly diagnosed high risk multiple myeloma (HRMM). In 56th ASH Annual Meeting and Exposition Lancet Haematol. Leukemia, 30, 526–535 (2015).

  50. 50.

    Lonial, S. et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 373, 621–631 (2015).

  51. 51.

    Gogishvili, T. et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+ normal lymphocytes. Blood 130, 2838–2847 (2017).

  52. 52.

    Danhof, S. et al. CAR-engineered T cells specific for the elotuzumab target SLAMF7 eliminate primary myeloma cells and confer selective fratricide of SLAMF7+ normal lymphocyte subsets. Blood 126, 115 (2015).

  53. 53.

    Wang, X. et al. CS-1 re-directed central memory T cell therapy for multiple myeloma. Blood 124, 1114 (2014).

  54. 54.

    Galetto, R., Chion-Sotinel, I., Gouble, A. & Smith, J. Bypassing the constraint for chimeric antigen receptor (CAR) development in T cells expressing the targeted antigen: improvement of anti-CS1 CAR activity in allogenic TCRa/CS1 double knockout T cells for the treatment of multiple myeloma (MM). Blood 126, 116 (2015).

  55. 55.

    Mathur, R. et al. Universal SLAMF7-specific CAR T cells as treatment for multiple myeloma. Blood 130(Suppl. 1), 502 (2017).

  56. 56.

    Flores-Montero, J. et al. Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytom. B 90, 61–72 (2016).

  57. 57.

    Perez-Andres, M. et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytom. B 78(Suppl. 1), S47–S60 (2010).

  58. 58.

    Terstappen, L. W., Johnsen, S., Segers-Nolten, I. M. & Loken, M. R. Identification and characterization of plasma cells in normal human bone marrow by high-resolution flow cytometry. Blood 76, 1739–1747 (1990).

  59. 59.

    Kumar, S., Kimlinger, T. & Morice, W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best. Pract. Res. Clin. Haematol. 23, 433–451 (2010).

  60. 60.

    Lammerts van Bueren, J. et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood 124, 3474 (2014).

  61. 61.

    Lokhorst, H. M. et al. Dose-dependent efficacy of daratumumab (DARA) as monotherapy in patients with relapsed or refractory multiple myeloma (RR MM). J. Clin. Oncol. 32(Suppl.), 8513 (2014).

  62. 62.

    van de Donk, N. W. et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol. Rev. 270, 95–112 (2016).

  63. 63.

    Shallis, R. M., Terry, C. M. & Lim S. H. The multi-faceted potential of CD38 antibody targeting in multiple myeloma. Cancer Immunol. Immunother. 66, 697–703. (2017).

  64. 64.

    Quarona, V. et al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytom. Part B 84, 207–217 (2013).

  65. 65.

    Drent, E. et al. Reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Blood 128, 2170 (2016).

  66. 66.

    Drent, E. et al. CD38 chimeric antigen receptor engineered T cells as therapeutic tools for multiple myeloma. Blood 124, 4759 (2014).

  67. 67.

    Liebisch, P. et al. CD44v6, a target for novel antibody treatment approaches, is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica 90, 489–493 (2005).

  68. 68.

    Neu, S. et al. Expression of CD44 isoforms by highly enriched CD34-positive cells in cord blood, bone marrow and leukaphereses. Bone Marrow Transplant. 20, 593–598 (1997).

  69. 69.

    Casucci, M. et al. Co-expression of a suicide gene in CAR-redirected T cells enables the safe targeting of CD44v6 for leukemia and myeloma eradication. Blood 120, 949 (2012).

  70. 70.

    Casucci, M. et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122, 3461–3472 (2013).

  71. 71.

    Yousef, S. et al. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma. Hum. Vaccines Immunother. 11, 1606–1611 (2015).

  72. 72.

    Atanackovic, D. et al. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica 96, 1512–1520 (2011).

  73. 73.

    Venniyil Radhakrishnan, S. et al. Chimeric antigen receptor (CAR) T cells specific for CD229: a potentially curative approach for multiple myeloma. Blood 130(Suppl. 1), 3142 (2017).

  74. 74.

    Smyth, M. J. et al. Activation of NK cell cytotoxicity. Mol. Immunol. 42, 501–510 (2005).

  75. 75.

    Klingemann, H. Are natural killer cells superior CAR drivers? Oncoimmunology 3, e28147 (2014).

  76. 76.

    Kriegsmann, K., Kriegsmann, M., von Bergwelt-Baildon, M., Cremer, M., Witzens-Harig M. NKT cells—new players in CAR cell immunotherapy? Eur. J. Haematol. 101, 750–757. (2018).

  77. 77.

    Chu, J. et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia 28, 917–927 (2014).

  78. 78.

    Jiang, H. et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol. Oncol. 8, 297–310 (2014).

  79. 79.

    Leivas, A. et al. Activated and expanded natural killer cells expressing an NKG2D-CAR efficiently target multiple myeloma cells. Blood 130(Suppl. 1), 4466 (2017).

  80. 80.

    Ping, Y., Liu, C. & Zhang, Y. T cell receptor-engineered T cells for cancer treatment: current status and future directions. Protein Cell 9, 254–266 (2018).

  81. 81.

    Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016).

  82. 82.

    Dahan, R. & Reiter, Y. T cell-receptor-like antibodies—generation, function and applications. Expert Rev. Mol. Med. 14, e6 (2012).

  83. 83.

    Weidanz, J. A., Hawkins, O., Verma, B. & Hildebrand, W. H. TCR-like biomolecules target peptide/MHC class I complexes on the surface of infected and cancerous cells. Int Rev. Immunol. 30, 328–340 (2011).

  84. 84.

    Debets, R., Donnadieu, E., Chouaib, S. & Coukos, G. TCR-engineered T cells to treat tumors: seeing but not touching? Semin. Immunol. 28, 10–21 (2016).

  85. 85.

    Maruta, M. et al. Development of T cell therapy by exploiting modified antibodies specific for A2/NY-ESO-1 for refractory myeloma. Blood 130(Suppl. 1), 1913 (2017).

  86. 86.

    Patel, K. K. et al. T cell therapy for multiple myeloma using NY-ESO-1+ T cell antigen presenting cells (T-APC) combined with adoptive cellular transfer (ACT) to augment immunotherapy. Blood 124, 3843 (2014).

  87. 87.

    Patel, K. et al. Combination immunotherapy with NY-ESO-1-specific CAR+ T cells with T cell vaccine improves anti-myeloma effect. Blood 128, 3366 (2016).

  88. 88.

    Mastaglio, S. et al. NY-ESO-1 TCR single edited stem and central memory T cells to treat multiple myeloma without graft-versus-host disease. Blood 130, 606–618 (2017).

  89. 89.

    Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

  90. 90.

    van Rhee, F. et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood 105, 3939–3944 (2005).

  91. 91.

    Jahn, L. et al. T cell receptors specific for the intracellular transcription factor Bob1 allow efficient targeting of human B cell leukemia and multiple myeloma. Blood 124, 3832 (2014).

  92. 92.

    Jahn, L. et al. T cell receptor gene therapy targeting the intracellular transcription factor Bob1 for the treatment of multiple myeloma and other B cell malignancies. Blood 126, 3002 (2015).

  93. 93.

    Jahn, L. et al. TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 129, 1284–1295 (2017).

  94. 94.

    Hatta, Y. et al. WT1 expression level and clinical factors in multiple myeloma. J. Exp. Clin. Cancer Res. 24, 595–599 (2005).

  95. 95.

    Rafiq, S., Dao, T., Liu, C., Scheinberg, D. A. & Brentjens, R. J. Engineered T cell receptor-mimic antibody, (TCRm) chimeric antigen receptor (CAR) T cells against the intracellular protein Wilms tumor-1 (WT1) for treatment of hematologic and solid cancers. Blood 124, 2155 (2014).

  96. 96.

    Yang, L., Han, Y., Suarez Saiz, F. & Minden, M. D. A tumor suppressor and oncogene: the WT1 story. Leukemia 21, 868–876 (2007).

Download references

Acknowledgements

Author contributions

H.G., M.S. and P.D. conceived of the presented idea. K.K., M.K. and M.H. wrote the manuscript. M.C. and C.M.-T. aided in manuscript concept. All authors reviewed the final manuscript.

Author information

Correspondence to Katharina Kriegsmann.

Ethics declarations

Consent for publication

The consent for publication is given by all authors.

Competing interests

The authors declare no competing interests.

Note

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International licence (CC BY 4.0).

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1