Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impact of disease burden on clinical outcomes of AML patients receiving allogeneic hematopoietic cell transplantation: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation

Abstract

Pre-transplant detectable measurable residual disease (MRD) is still associated with high risk of relapse and poor outcomes in acute myeloid leukemia (AML). We aimed at evaluating the impact of disease burden on prediction of relapse and survival in patients receiving allogeneic hematopoietic cell transplantation (allo-HCT) in first remission (CR1). We identified a total of 3202 adult AML patients, of these 1776 patients were in CR1 and MRD positive and 1426 patients were primary refractory at time of transplant. After a median follow-up of 24.4 months, non-relapse mortality and relapse rate were significantly higher in the primary refractory group compared to the CR1 MRD positive group (Hazards Ratio (HR) = 1.82 (95% CI: 1.47–2.24) p < 0.001 and HR = 1.54 (95% CI: 1.34–1.77), p < 0.001), respectively. Leukemia-free survival (LFS) and overall survival (OS) were significantly worse in the primary refractory group (HR = 1.61 (95% CI: 1.44-1.81), p < 0.001 and HR = 1.71 (95% CI: 1.51–1.94), p < 0.001, respectively). Our real-life data suggest that patients in CR1 and MRD positive at time of transplant could still be salvaged by allo-HCT with a 2-year OS of 63%, if negative MRD cannot be obtained and their outcomes are significantly better than patients transplanted with active disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of post-transplant outcomes between the two groups of complete remission with detectable measurable residual disease (CR1 MRD+) and primary refractory at time of transplant (Prim. Ref).

Similar content being viewed by others

Data availability

Upon request from the corresponding author.

References

  1. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. https://doi.org/10.1182/blood-2016-08-733196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, et al. 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2021;138:2753–67. https://doi.org/10.1182/blood.2021013626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuurhuis GJ, Heuser M, Freeman S, Bene MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131:1275–91. https://doi.org/10.1182/blood-2017-09-801498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagler A, Baron F, Labopin M, Polge E, Esteve J, Bazarbachi A, et al. Measurable residual disease (MRD) testing for acute leukemia in EBMT transplant centers: a survey on behalf of the ALWP of the EBMT. Bone Marrow Transpl. 2021;56:218–24. https://doi.org/10.1038/s41409-020-01005-y.

    Article  Google Scholar 

  5. Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102:865–73. https://doi.org/10.3324/haematol.2016.159343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29:1190–7. https://doi.org/10.1200/jco.2010.31.8121.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34:329–36. https://doi.org/10.1200/jco.2015.63.3826.

    Article  PubMed  Google Scholar 

  8. Zhou Y, Othus M, Araki D, Wood BL, Radich JP, Halpern AB, et al. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid. Leuk Leuk. 2016;30:1456–64. https://doi.org/10.1038/leu.2016.46.

    Article  CAS  Google Scholar 

  9. Ustun C, Courville EL, DeFor T, Dolan M, Randall N, Yohe S, et al. Myeloablative, but not reduced-intensity, conditioning overcomes the negative effect of flow-cytometric evidence of leukemia in acute myeloid leukemia. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2016;22:669–75. https://doi.org/10.1016/j.bbmt.2015.10.024.

    Article  Google Scholar 

  10. Morsink LM, Bezerra ED, Othus M, Wood BL, Fang M, Sandmaier BM, et al. Comparative analysis of total body irradiation (TBI)-based and non-TBI-based myeloablative conditioning for acute myeloid leukemia in remission with or without measurable residual disease. Leukemia. 2020;34:1701–5. https://doi.org/10.1038/s41375-019-0671-x.

    Article  PubMed  Google Scholar 

  11. Morsink LM, Sandmaier BM, Othus M, Palmieri R, Granot N, Bezerra ED, et al. Conditioning intensity, pre-transplant flow cytometric measurable residual disease, and outcome in adults with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation. Cancers. 2020;12:2339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilleece MH, Labopin M, Yakoub-Agha I, Volin L, Socié G, Ljungman P, et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party. Eur Soc Blood Marrow Transplant Am J Hematol. 2018;93:1142–52. https://doi.org/10.1002/ajh.25211.

    Article  Google Scholar 

  13. Schlenk RF, Döhner K, Mack S, Stoppel M, Király F, Götze K, et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian trial AMLHD98A. J Clin Oncol. 2010;28:4642–8. https://doi.org/10.1200/jco.2010.28.6856.

    Article  PubMed  Google Scholar 

  14. Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM, et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol. 2010;28:3730–8. https://doi.org/10.1200/jco.2010.28.8852.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Le Bourgeois A, Labopin M, Marçais A, de Latour RP, Blaise D, Chantepie S, et al. Sequential allogeneic hematopoietic stem cell transplantation for active refractory/relapsed myeloid malignancies: results of a reduced-intensity conditioning preceded by clofarabine and cytosine arabinoside, a retrospective study on behalf of the SFGM-TC. Ann Hematol. 2020;99:1855–62. https://doi.org/10.1007/s00277-020-04074-7.

    Article  CAS  PubMed  Google Scholar 

  16. Malard F, Labopin M, Stuhler G, Bittenbring J, Ganser A, Tischer J, et al. Sequential intensified conditioning regimen allogeneic hematopoietic stem cell transplantation in adult patients with intermediate- or high-risk acute myeloid leukemia in complete remission: a study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2017;23:278–84. https://doi.org/10.1016/j.bbmt.2016.11.002.

    Article  Google Scholar 

  17. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ. Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol. 2005;23:5675–87. https://doi.org/10.1200/jco.2005.07.061.

    Article  PubMed  Google Scholar 

  18. Pfrepper C, Klink A, Behre G, Schenk T, Franke GN, Jentzsch M, et al. Risk factors for outcome in refractory acute myeloid leukemia patients treated with a combination of fludarabine, cytarabine, and amsacrine followed by a reduced-intensity conditioning and allogeneic stem cell transplantation. J Cancer Res Clin Oncol. 2016;142:317–24. https://doi.org/10.1007/s00432-015-2050-y.

    Article  CAS  PubMed  Google Scholar 

  19. Kebriaei P, Kline J, Stock W, Kasza K, Le Beau MM, Larson RA, et al. Impact of disease burden at time of allogeneic stem cell transplantation in adults with acute myeloid leukemia and myelodysplastic syndromes. Bone Marrow Transpl. 2005;35:965–70. https://doi.org/10.1038/sj.bmt.1704938.

    Article  CAS  Google Scholar 

  20. Thol F, Gabdoulline R, Liebich A, Klement P, Schiller J, Kandziora C, et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood. 2018;132:1703–13. https://doi.org/10.1182/blood-2018-02-829911. e-pub ahead of print 2018/09/08.

    Article  CAS  PubMed  Google Scholar 

  21. Jentzsch M, Grimm J, Bill M, Brauer D, Backhaus D, Schulz J, et al. Prognostic relevance of remission and measurable residual disease status in AML patients prior to reduced intensity or non-myeloablative allogeneic stem cell transplantation. Blood Cancer J. 2021;11:80 https://doi.org/10.1038/s41408-021-00471-x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lachowiez CA, Atluri H, DiNardo CD. Advancing the standard: venetoclax combined with intensive induction and consolidation therapy for acute myeloid leukemia. Ther Adv Hematol. 2022;13:20406207221093964 https://doi.org/10.1177/20406207221093964.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stelljes M, Middeke JM, Bug G, Wagner E-M, Mueller LP, Christoph S, et al. In patients with relapsed/refractory AML sequential conditioning and immediate allogeneic stem cell transplantation (allo-HCT) results in similar overall and leukemia-free survival compared to intensive remission induction chemotherapy followed by Allo-HCT: results from the randomized phase III ASAP trial. Blood. 2022;140:9–11. https://doi.org/10.1182/blood-2022-159962.

    Article  Google Scholar 

  24. Bazarbachi A, Bug G, Baron F, Brissot E, Ciceri F, Dalle IA, et al. Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with FLT3-internal tandem duplication: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Haematologica. 2020;105:1507–16. https://doi.org/10.3324/haematol.2019.243410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bazarbachi A, Labopin M, Battipaglia G, Djabali A, Passweg J, Socié G, et al. Sorafenib improves survival of FLT3-mutated acute myeloid leukemia in relapse after allogeneic stem cell transplantation: a report of the EBMT Acute Leukemia Working Party. Haematologica. 2019;104:e398–e401. https://doi.org/10.3324/haematol.2018.211615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abou Dalle I, El Cheikh J, Bazarbachi A. Pharmacologic strategies for post-transplant maintenance in acute myeloid leukemia: it is time to consider! Cancers. 2022; 14. https://doi.org/10.3390/cancers14061490.

Download references

Acknowledgements

We acknowledge all participating EBMT centers as well as the patients and their respective treating physicians that made this database accessible for research.

Author information

Authors and Affiliations

Authors

Contributions

IA and AB wrote the manuscript with input from the coauthors. ML performed the statistical analysis. IA, MM, and AB conceived and designed the study. MM and AB directed and edited the manuscript. All authors participated in the discussion, intellectual content, and have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ali Bazarbachi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou Dalle, I., Labopin, M., Kröger, N. et al. Impact of disease burden on clinical outcomes of AML patients receiving allogeneic hematopoietic cell transplantation: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 58, 784–790 (2023). https://doi.org/10.1038/s41409-023-01961-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-01961-1

Search

Quick links