Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Update on VEXAS and role of allogeneic bone marrow transplant: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT

Abstract

VEXAS (acronym for Vacuoles, E1 enzyme, X-linked, Autoinflammatory, Somatic) is a fascinating new entity encompassing a variety of clinical manifestations, spanning from auto-inflammatory symptoms to hematologic disorders, including myelodysplastic syndromes and plasma cell dyscrasias. Genetically defined by somatic mutations of the X-linked gene UBA1 in hematopoietic stem and progenitor cells, VEXAS typically manifests in males during the fifth/sixth decade of life. Since its discovery, several groups have documented pleomorphic clinical phenotypes, in addition to a plethora of therapeutic options (e.g., JAK inhibitors, hypomethylating agents, and allogeneic stem cell transplant, allo-HCT) in retrospective case series. However, no treatment guidelines have been validated to date, VEXAS patients are typically steroid-dependent and may manifest life-threatening inflammatory symptoms refractory to multiple lines of therapy. To date, the only curative option appears to be allo-HCT in suitable individuals. Nonetheless, this procedure carries an inherent risk of morbidity and mortality that must be judiciously evaluated against a phenotypically diverse disorder where the optimal therapeutic algorithm remains ill-defined. Herein, we provide an overview of the current VEXAS data/ therapeutic evidence and discuss the curative potential of allo-HCT whilst highlighting the efforts required for generation of robust data able to inform therapeutic decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vacuoles of hematopoietic precursors in a patient with VEXAS syndrome and MDS-MLD.
Fig. 2: Diagnostic algorithm of VEXAS.
Fig. 3: Patient, disease-specific and treatment-related factors influencing the allo-HCT decision-making process in VEXAS.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Hasserjian RP. This Year’s Best in Hematology Diagnosis: A New Disease Is Discovered. The Hematologist. 2022;19.

  2. Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl J Med. 2020;383:2628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oganesyan A, Jachiet V, Chasset F, Hirsch P, Hage-Sleiman M, Fabiani B, et al. VEXAS syndrome: Still expanding the clinical phenotype. Rheumatol (Oxf, Engl). 2021;60:e321–e3.

    Article  Google Scholar 

  4. Oganesyan A, Hakobyan Y, Terrier B, Georgin-Lavialle S, Mekinian A. Looking beyond VEXAS: Coexistence of undifferentiated systemic autoinflammatory disease and myelodysplastic syndrome. Semin Hematol. 2021;58:247–53.

    Article  PubMed  Google Scholar 

  5. Gurnari C, Pagliuca S, Durkin L, Terkawi L, Awada H, Kongkiatkamon S, et al. Vacuolization of hematopoietic precursors: an enigma with multiple etiologies. Blood 2021;137:3685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gurnari C, Rogers HJ. Copper Deficiency. N. Engl J Med. 2021;385:640.

    Article  PubMed  Google Scholar 

  7. Lacombe V, Prevost M, Bouvier A, Thépot S, Chabrun F, Kosmider O, et al. Vacuoles in neutrophil precursors in VEXAS syndrome: diagnostic performances and threshold. Br J Haematol. 2021;195:286–9.

  8. Poulter JA, Collins JC, Cargo C, De Tute RM, Evans P, Ospina Cardona D, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood 2021;137:3676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poulter JA, Savic S. Genetics of somatic auto-inflammatory disorders. Semin Hematol. 2021;58:212–7.

    Article  PubMed  Google Scholar 

  10. Templé M, Duroyon E, Croizier C, Rossignol J, Huet T, Friedrich C, et al. Atypical splice-site mutations causing VEXAS syndrome. Rheumatol (Oxf, Engl). 2021;60:e435–e7.

    Article  Google Scholar 

  11. Dunford A, Weinstock DM, Savova V, Schumacher SE, Cleary JP, Yoda A, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat Genet. 2017;49:10–6.

    Article  CAS  PubMed  Google Scholar 

  12. Stubbins RJ, McGinnis E, Johal B, Chen LY, Wilson L, Cardona DO, et al. VEXAS syndrome in a female patient with constitutional 45,X (Turner syndrome). Haematologica 2022;107:1011–3.

    Article  PubMed  Google Scholar 

  13. Arlet JB, Terrier B, Kosmider O. Mutant UBA1 and Severe Adult-Onset Autoinflammatory Disease. N. Engl J Med. 2021;384:2163.

    Article  PubMed  Google Scholar 

  14. Tsuchida N, Kunishita Y, Uchiyama Y, Kirino Y, Enaka M, Yamaguchi Y, et al. Pathogenic UBA1 variants associated with VEXAS syndrome in Japanese patients with relapsing polychondritis. Ann Rheum Dis. 2021;80:1057–61.

  15. Barba T, Jamilloux Y, Durel CA, Bourbon E, Mestrallet F, Sujobert P, et al. VEXAS syndrome in a woman. Rheumatol (Oxf, Engl). 2021;60:e402–e3.

    Article  Google Scholar 

  16. Gurnari C, Panetta P, Fabiani E, Nardone AM, Postorivo D, Falconi G, et al. Identification of i(X)(p10) as the sole molecular abnormality in atypical chronic myeloid leukemia evolved into acute myeloid leukemia. Mol Clin Oncol. 2018;8:463–5.

    PubMed  Google Scholar 

  17. Zakine E, Schell B, Battistella M, Vignon-Pennamen MD, Chasset F, Mahévas T, et al. UBA1 Variations in Neutrophilic Dermatosis Skin Lesions of Patients With VEXAS Syndrome. JAMA Dermatol. 2021;157:1349–54.

    Article  PubMed  Google Scholar 

  18. Lacombe V, Beucher A, Urbanski G, Le Corre Y, Cottin L, Croué A, et al. Distinction between clonal and paraclonal cutaneous involvements in VEXAS syndrome. Exp Hematol Oncol. 2022;11:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferrada MA, Savic S, Ospina Cardona D, Collins JC, Alessi H, Gutierrez-Rodrigues F, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood. 2022:blood.2022016985. https://doi.org/10.1182/blood.2022016985. Online ahead of print.

  20. Obiorah IE, Patel BA, Groarke EM, Wang W, Trick M, Ombrello AK, et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 2021;5:3203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfeilstöcker M, Tuechler H, Sanz G, Schanz J, Garcia-Manero G, Solé F, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood 2016;128:902–10.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  23. Kusne Y, Fernandez J, Patnaik MM. Clonal hematopoiesis and VEXAS syndrome: survival of the fittest clones? Semin Hematol. 2021;58:226–9.

    Article  PubMed  Google Scholar 

  24. Shaukat F, Hart M, Burns T, Bansal P. UBA1 and DNMT3A mutations in VEXAS syndrome. A case report and literature review. Mod Rheumatol case Rep. 2022;6:134–9.

    Article  PubMed  Google Scholar 

  25. Georgin-Lavialle S, Terrier B, Guedon AF, Heiblig M, Comont T, Lazaro E, et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br J Dermatol. 2022;186:564–74.

  26. van der Made CI, Potjewijd J, Hoogstins A, Willems HPJ, Kwakernaak AJ, de Sevaux RGL, et al. Adult-onset autoinflammation caused by somatic mutations in UBA1: A Dutch case series of patients with VEXAS. J Allergy Clin Immunol. 2022;149:432–9. e4

    Article  PubMed  Google Scholar 

  27. Groarke EM, Dulau-Florea AE, Kanthi Y. Thrombotic manifestations of VEXAS syndrome. Semin Hematol. 2021;58:230–8.

    Article  PubMed  Google Scholar 

  28. Emmi G, Silvestri E, Squatrito D, Amedei A, Niccolai E, D’Elios MM, et al. Thrombosis in vasculitis: from pathogenesis to treatment. Thrombosis J. 2015;13:15.

    Article  Google Scholar 

  29. Oo TM, Koay JTJ, Lee SF, Lee SMS, Lim XR, Fan BE. Thrombosis in VEXAS syndrome. J Thrombosis Thrombolysis. 2022;53:965–70.

    Article  Google Scholar 

  30. Heiblig M, Patel BA, Groarke EM, Bourbon E, Sujobert P. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021;58:239–46.

    Article  PubMed  Google Scholar 

  31. Bourbon E, Heiblig M, Gerfaud Valentin M, Barba T, Durel C-A, Lega JC, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood 2021;137:3682–4.

    Article  CAS  PubMed  Google Scholar 

  32. Raaijmakers M, Hermans M, Aalbers A, Rijken M, Dalm V, van Daele P, et al. Azacytidine Treatment for VEXAS Syndrome. HemaSphere. 2021;5:e661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Comont T, Heiblig M, Rivière E, Terriou L, Rossignol J, Bouscary D, et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br J Haematol. 2022;196:969–74.

    Article  CAS  PubMed  Google Scholar 

  34. Mekinian A, Grignano E, Braun T, Decaux O, Liozon E, Costedoat-Chalumeau N, et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatol (Oxf, Engl). 2016;55:291–300.

    Article  CAS  Google Scholar 

  35. Gang AO, Frøsig TM, Brimnes MK, Lyngaa R, Treppendahl MB, Grønbæk K, et al. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood cancer J. 2014;4:e197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landman S, Cruijsen M, Urbano PCM, Huls G, van Erp PEJ, van Rijssen E, et al. DNA Methyltransferase Inhibition Promotes Th1 Polarization in Human CD4(+)CD25(high) FOXP3(+) Regulatory T Cells but does not affect their suppressive capacity. J Immunol Res. 2018;2018:4973964.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stübig T, Badbaran A, Luetkens T, Hildebrandt Y, Atanackovic D, Binder TM, et al. 5-azacytidine promotes an inhibitory T-cell phenotype and impairs immune mediated antileukemic activity. Mediators Inflamm. 2014;2014:418292.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frikeche J, Clavert A, Delaunay J, Brissot E, Grégoire M, Gaugler B, et al. Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp Hematol. 2011;39:1056–63.

    Article  CAS  PubMed  Google Scholar 

  39. McLornan DP, Pope JE, Gotlib J, Harrison CN. Current and future status of JAK inhibitors. Lancet (Lond, Engl). 2021;398:803–16.

    Article  Google Scholar 

  40. McLornan DP, Khan AA, Harrison CN. Immunological Consequences of JAK Inhibition: Friend or Foe? Curr hematologic Malignancy Rep. 2015;10:370–9.

    Article  Google Scholar 

  41. Heiblig M, Ferrada MA, Koster MJ, Barba T, Gerfaud-Valentin M, Mékinian A, et al. Ruxolitinib is more effective than other JAK Inhibitors to treat VEXAS Syndrome: A retrospective multi center study. Blood. 2022:blood.2022016642. https://doi.org/10.1182/blood.2022016642. Online ahead of print.

  42. Islam S, Cullen T, Sumpton D, Damodaran A, Heath D, Bosco A, et al. VEXAS syndrome: lessons learnt from an early Australian case series. Intern Med J. 2022;52:658–62.

    Article  PubMed  Google Scholar 

  43. Staels F, Betrains A, Woei AJF, Boeckx N, Beckers M, Bervoets A, et al. Case Report: VEXAS Syndrome: From Mild Symptoms to Life-Threatening Macrophage Activation Syndrome. Front Immunol. 2021;12:678927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goyal A, Narayanan D, Wong W, Laga AC, Connell NT, Ritter SY, et al. Tocilizumab for treatment of cutaneous and systemic manifestations of vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome without myelodysplastic syndrome. JAAD case Rep. 2022;23:15–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kirino Y, Takase-Minegishi K, Tsuchida N, Hirahara L, Kunishita Y, Yoshimi R, et al. Tocilizumab in VEXAS relapsing polychondritis: a single-center pilot study in Japan. Ann Rheum Dis. 2021;80:1501–2.

    Article  PubMed  Google Scholar 

  46. Vila AT, Puig L, Fernández-Figueras MT, Laiz AM, Vidal D, Alomar A. Adverse cutaneous reactions to anakinra in patients with rheumatoid arthritis: clinicopathological study of five patients. Br J Dermatol. 2005;153:417–23.

    Article  CAS  PubMed  Google Scholar 

  47. Kaiser C, Knight A, Nordström D, Pettersson T, Fransson J, Florin-Robertsson E, et al. Injection-site reactions upon Kineret (anakinra) administration: experiences and explanations. Rheumatol Int. 2012;32:295–9.

    Article  CAS  PubMed  Google Scholar 

  48. Diarra A, Duployez N, Fournier E, Preudhomme C, Coiteux V, Magro L, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a two center experience. Blood Adv. 2022;6:998–1003.

  49. Diarra A, Duployez N, Terriou L. Mutant UBA1 and severe adult-onset autoinflammatory disease. N. Engl J Med. 2021;384:2163–4.

    Article  PubMed  Google Scholar 

  50. Loschi M, Roux C, Sudaka I, Ferrero-Vacher C, Marceau-Renaut A, Duployez N, et al. Allogeneic stem cell transplantation as a curative therapeutic approach for VEXAS syndrome: a case report. Bone marrow Transplant. 2022;57:315–8.

    Article  PubMed  Google Scholar 

  51. Elsawy M, Sorror ML. Up-to-date tools for risk assessment before allogeneic hematopoietic cell transplantation. Bone marrow Transplant. 2016;51:1283–300.

    Article  CAS  PubMed  Google Scholar 

  52. Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2022;57:1055–62.

  53. Snowden JA, Sánchez-Ortega I, Corbacioglu S, Basak GW, Chabannon C, de la Camara R, et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant. 2022:57:1217–39.

  54. Poulter J, Gough A, Isaacs JD, Green M, McHugh N, Hordon L, et al. A High-Throughput Amplicon Screen for Somatic UBA1 Variants in Cytopenic and Giant Cell Arteritis Cohorts. J Clin Immunol. 2022. https://doi.org/10.1007/s10875-022-01258-w. Online ahead of print.

  55. Voso MT, Gurnari C. Have we reached a molecular era in myelodysplastic syndromes? Hematol Am Soc Hematol Educ Program. 2021;2021:418–27.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Edward P. Evans Foundation (to CG). The Authors thank Dr. Heesun J. Rogers for providing histopathology pictures.

Author information

Authors and Affiliations

Authors

Contributions

CG and DPM conceived the idea and wrote the manuscript.

Corresponding author

Correspondence to Donal P. McLornan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurnari, C., McLornan, D.P. Update on VEXAS and role of allogeneic bone marrow transplant: Considerations on behalf of the Chronic Malignancies Working Party of the EBMT. Bone Marrow Transplant 57, 1642–1648 (2022). https://doi.org/10.1038/s41409-022-01774-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-022-01774-8

This article is cited by

Search

Quick links