Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD14 positive cells accelerate hematopoietic stem cell engraftment

Abstract

The improvement of hematopoietic stem and progenitor cell (HSPC) engraftment remains a high-priority goal when limited cell doses are available, such as in cord blood (CB) transplantation and HSC gene therapy. We observed that monocytes are highly effective at improving the engraftment of both CB-CD34+ and lentivirus-transfected CD34+ cells in a xenogeneic model of HSC transplantation. Moreover, monocytes, in particular the CD14+CD16 classical subset, in co-culture systems increase survival and stemness of CB-CD34+ cells. Both soluble factors and direct-cell contact interactions, such as JAG/NOTCH and COX-2/PGE2 pathways, are critically involved in the HSC-monocyte crosstalk. Our results indicate that the infusion of monocytes improves engraftment when cell dose is a limiting factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Human CD14+ monocytes expedite in vivo engraftment of CB-CD34+ cells and of lentiviral transduced CD34+ cell and increase their survival and stemness in vitro.
Fig. 2: Classical monocytes positively influence CB-CD34+ cell survival and stemness throught JAG1/NOTCH and COX-2/PGE2 pathways.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Wei Q, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;48:632–48.

    Article  CAS  Google Scholar 

  2. Rocha V, Labopin M, Sanz G, Arcese W, Schwerdtfeger R, Bosi A, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85.

    Article  CAS  Google Scholar 

  3. Zonari E, Desantis G, Petrillo C, Boccalatte FE, Lidonnici MR, Kajaste-Rudnitski A, et al. Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy. Stem Cell Rep. 2017;8:977–90.

    Article  CAS  Google Scholar 

  4. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 2010;16:232–6.

    Article  CAS  Google Scholar 

  5. Stiff PJ, Montesinos P, Peled T, Landau E, Goudsmid NR, Mandel J, et al. Cohort-controlled comparison of umbilical cord blood transplantation using carlecortemcel-l, a single progenitor-enriched cord blood, to double cord blood unit transplantation. Biol Blood Marrow Transpl. 2018;24:1463–70.

    Article  CAS  Google Scholar 

  6. Horwitz ME, Wease S, Blackwell B, Valcarcel D, Frassoni F, Boelens JJ, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 2019;37:367–74.

    Article  CAS  Google Scholar 

  7. Wagner JE, Brunstein CG, Boitano AE, DeFor TE, McKenna D, Sumstad D, et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 2016;18:144–55.

    Article  CAS  Google Scholar 

  8. Cohen S, Roy J, Lachance S, Delisle J-S, Marinier A, Busque L, et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol. 2020;7:e134–e145.

    Article  Google Scholar 

  9. de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367:2305–15.

    Article  Google Scholar 

  10. Macmillan ML, Blazar BR, DeFor TE, Wagner JE. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transpl. 2009;43:447–54.

    Article  CAS  Google Scholar 

  11. Trento C, Marigo I, Pievani A, Galleu A, Dolcetti L, Wang C-Y, et al. Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b+ cells that expedite hematopoietic recovery. Haematologica. 2017;102:818–25.

    Article  CAS  Google Scholar 

  12. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208:261–71.

    Article  CAS  Google Scholar 

  13. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12:657–64.

    Article  CAS  Google Scholar 

  14. Ziegler-Heitbrock L, Hofer TPJ. Toward a refined definition of monocyte subsets. Front Immunol. 2013;4:23.

    Article  Google Scholar 

  15. Cantore A, Ranzani M, Bartholomae CC, Volpin M, Della Valle P, Sanvito F, et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med. 2015;7:277ra28.

    Article  CAS  Google Scholar 

  16. Pievani A, Michelozzi IM, Rambaldi B, Granata V, Corsi A, Dazzi F, et al. Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice. Sci Rep. 2018;8:9125.

    Article  CAS  Google Scholar 

  17. Wong KL, Tai JJ-Y, Wong W-C, Han H, Sem X, Yeap W-H, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118:e16–31.

    Article  CAS  Google Scholar 

  18. Ancuta P, Liu KY, Misra V, et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16− monocyte subsets. BMC Genomics. 2009;10:403.

    Article  Google Scholar 

  19. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood. 2010;115:e10–9.

    Article  CAS  Google Scholar 

  20. Karanu FN, Murdoch B, Gallacher L, Wu DM, Koremoto M, Sakano S, et al. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med. 2000;192:1365–72.

    Article  CAS  Google Scholar 

  21. Hoggatt J, Mohammad KS, Singh P, Hoggatt AF, Chitteti BR, Speth JM, et al. Differential stem and progenitor cell trafficking by prostaglandin E2. Nature. 2013;495:365–9.

    Article  CAS  Google Scholar 

  22. Heideveld E, Masiello F, Marra M, Esteghamat F, Yagci N, von Lindern M, et al. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield. Haematologica. 2015;100:1396–406.

    Article  CAS  Google Scholar 

  23. Li H, Sun S, Lei Q, Lei P, Cai X, Wan C, et al. M1-polarized macrophages promote self-renewing phenotype of hepatic progenitor cells with Jagged1-Notch signalling involved: Relevance in primary sclerosing cholangitis. J Immunol Res. 2018;2018:4807145.

    PubMed  PubMed Central  Google Scholar 

  24. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. PGE2 regulates vertebrate haematopoieic stem cells homeostasis. Nature. 2007;447:1007–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Fondazione Matilde Tettamanti, Comitato Maria Letizia Verga, and Fondazione MBBM for their generous support. This work was supported by Blood Cancer UK.

Author information

Authors and Affiliations

Authors

Contributions

AP and VG collection and assembly of data, data analysis and interpretation, manuscript writing; GD collection and assembly of data; LA statistical analysis; SO provision of study material or patients; BG, AG, and AB manuscript reviewing and editing; FD and MS conception and design, manuscript writing and final approval of manuscript.

Corresponding authors

Correspondence to Francesco Dazzi or Marta Serafini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pievani, A., Granata, V., Desantis, G. et al. CD14 positive cells accelerate hematopoietic stem cell engraftment. Bone Marrow Transplant 57, 942–948 (2022). https://doi.org/10.1038/s41409-022-01662-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-022-01662-1

Search

Quick links